

 [image: Navbar]

 [image: Logo]

 	
 Integrating with SecurePay

	
 SecurePay API
 	
 Getting started
 	
 Obtaining a SecurePay test account

	
 Giving SecurePay API a test run

	
 Setting up your live account

	
 Environment details

	
 Authentication
 	
 Overview

	
 Client Credentials

	
 Card Payments
 	
 Overview
 	
 Your PCI footprint

	
 Adding the UI Component

	
 How it works

	
 JavaScript SDK
 	
 Environment Details

	
 How does it work?

	
 Public Methods

	
 UI Config Object

	
 Dynamic Currency Conversion

	
 DCC receipt format

	
 Callbacks

	
 Tokenised Card Object

	
 DCC Quote Object

	
 DCC Quote Details Object

	
 Converted Object

	
 Exchange rate object

	
 Error Object

	
 Rest API
 	
 Create Payment

	
 Refund Payment

	
 Create Account Verification Transaction

	
 Create PreAuth/InitialAuth Transaction

	
 Increase InitialAuth Transaction

	
 Cancel InitialAuth Transaction

	
 Capture PreAuth/InitialAuth Transaction

	
 Create Payment (Stored Payment Instrument)

	
 Initiate Payment Order

	
 Create Payment Instrument

	
 Payment Instruments

	
 Delete Payment Instrument

	
 Payment Objects

	
 Error Codes

	
 Testing

	
 3DS2 Testing

	
 Apple Pay Payments
 	
 Overview

	
 How it works
 	
 On Apple Device

	
 Integration with Apple Pay
 	
 Apple Pay Account setup

	
 On Safari Browser

	
 Testing

	
 Rest API
 	
 Initiate Session

	
 Apple Pay Payment

	
 Refund Apple Pay Payment

	
 Payment Transaction Status

	
 Error Codes

	
 Direct Entry Payments
 	
 Overview

	
 Rest API
 	
 Create Direct Entry Payment

	
 Error Codes

	
 PayPal Payments
 	
 How it works
 	
 Sample code

	
 Rest API
 	
 Initiate PayPal Transaction

	
 Execute PayPal Transaction

	
 Refund PayPal Transaction

	
 Retrieve PayPal order details

	
 PayPal Objects

	
 Error Codes

	
 3D Secure 2
 	
 Overview

	
 3DS2 Javascript SDK
 	
 How does it work?

	
 Environment Details

	
 Initiate A 3DS2 Payment Order

	
 Load SecurePay 3DS2 JavaScript SDK

	
 Initialise the 3D Secure JS

	
 Configure the callbacks required for the script

	
 Trigger the 3DS2 Authentication

	
 Initialise and start 3DS

	
 Handle the Authentication Outcome

	
 Liability Shift Indicator

	
 Transaction Status Reason Codes

	
 Error Codes

	
 3DS2 Testing

	
 Fraud detection - FraudGuard
 	
 Overview

	
 Rest API
 	
 Perform Fraud Detection

	
 Fraud Objects
 	
 Payment Details Object

	
 Customer Details Object

	
 Shipping Address Object

	
 Billing Address Object

	
 Fraud Check Result Object

	
 Fraud Error Codes

	
 Fraud detection - ACI ReD Shield
 	
 Overview

	
 Fraud Javascript SDK

	
 Rest API
 	
 Perform Fraud Detection

	
 Fraud Objects
 	
 Payment Details Object

	
 Product Details Object

	
 Customer Details Object

	
 Shipping Address Object

	
 Billing Address Object

	
 Custom Fields Object

	
 Fraud Check Result Object

	
 Fraud Error Codes

	
 Scheduled Payments
 	
 Overview

	
 Rest API
 	
 Create a once off payment on specified date

	
 Create a payment schedule

	
 Delete a payment schedule or a once off payment on specified date

	
 Scheduling Objects

	
 Error Codes

	
 Errors
 	
 Overview
 	
 Response

	
 Error

	
 Other Integration methods
 	
 Overview

	
 Integration guides

	
 e-Commerce extensions
 	
 Overview

	
 Magento
 	
 Part 1 - Download the extension

	
 Part 2 - Install the extension

	
 Part 3 - Configure the SecurePay extension

	
 OpenCart
 	
 Part 1 - Download the extension

	
 Part 2 - Install the extension

	
 Part 3 - Configure the SecurePay extension

	
 WooCommerce
 	
 Part 1 - Download the extension

	
 Part 2 - Install the extension

	
 Part 3 - Configure the SecurePay extension

	
 PrestaShop
 	
 Part 1 - Download the extension

	
 Part 2 - Install the extension

	
 Part 3 - Configure the SecurePay extension

	
 Troubleshooting Guide
 	
 List of supported issues

	
 Support
 	
 Contact Us

	
 System status

 Integrating with SecurePay

Getting started with SecurePay is quick and easy, and there are multiple ways you can integrate based on your needs. You also have the chance to test your integration after signing up for an account. SecurePay provides you with a sandbox version, allowing you to freely test SecurePay on your website for as long as you’d like before starting with a live account.

The methods in which you can integrate with SecurePay include SecurePay API, e-Commerce extensions and other methods such as XML, SecureFrame, SecureBill and more.

To find out more on each of the integration methods available, click on the links below.

SecurePay API

Other integration methods

e-Commerce extensions

SecurePay API

The SecurePay API allows you to take payments on your web site in a PCI DSS compliant manner
whilst retaining a much greater degree of control over the look & feel than is
possible with other payment integrations.

Getting started
Obtaining a SecurePay test account

To obtain your test credentials, you must first create an account with SecurePay.
If you’d like to do this now, follow this link to the SecurePay home page and sign up for free.

After entering your details, you’ll be given a clientId, a clientSecret and a merchantCode.

These are your test credentials, which you can use to explore SecurePay API’s functionality and integration for free before you start trading.

Giving SecurePay API a test run

Along with your clientId and your clientSecret, you will also have been issued a merchantCode, which you will need to access the sandbox environment where SecurePay can be tested.

To test the SecurePay API and get a feel for how everything works, simply have your credentials ready and access the sandbox environment .

Setting up your live account

Once you’re ready, you can return to your SecurePay account and apply for your merchant account/facility.

After approval, you’ll receive a welcome email providing access to your merchant portal.

After logging in, you’ll notice an activated status letting you know that you’re all set up and ready to integrate our API onto your live site!
You will also find your live clientSecret.

SecurePay will use this to confirm data exchanges (sensitive information) with you as a merchant, so keep it safe and secure!

Environment details

To consume SecurePay API you will need an accessToken to authenticate, refer to the authentication section for more information.

	Environment	URL
	Sandbox	https://payments-stest.npe.auspost.zone
	Live	https://payments.auspost.net.au

Authentication
Overview

SecurePay API uses the OAuth 2.0 protocol for authentication and authorization.
Your client application requests an access token from the Authorization Server, and sends the token as part of the Authorization Header to the SecurePay API resource that you want to access.

OAuth 2.0 is used by the world’s largest digital organisations, and it is currently the most secure and technologically advanced protocol of its kind.
It uses fast-expiring access tokens that can only be utilised for specific resources by applications.
This greatly mitigates the risk of “man-in-the-middle” attack and data breaching.

Client Credentials

For security reasons, do not retrieve a new “access_token” for every API call. Any “access_token” granted as part of this API is valid for a duration of 24 hours. Refer to response field “expires_in” for more details.

Example code to obtain an access token:

curl -X POST \
 https://welcome.api2.sandbox.auspost.com.au/oauth/token \
 --header 'Authorization: Basic xxxxxxxx' \
 --header 'Content-Type: application/x-www-form-urlencoded' \
 --data-urlencode 'grant_type=client_credentials' \
 --data-urlencode 'audience=https://api.payments.auspost.com.au'

{
 "access_token": "eyJraWQiOiJJTzdwOUxNcEd0NBlLLV80Q192SFUyaUFvcGJoMXNZQ0JCOTV5cEthVzBJIiwiYWxnIjoiUlMyNTYifQ.eyJ2ZXIiOjEsImp0aSI6IkFULkFSdUVqbmdlcmJFWHZ1M1ZEMGMzZjNjWDM3OWJzZzhzeElmTmZXNUttSGsiLCJpc3MiOiJodHRwczovL2Rldi00MjQ4ODMub2t0YS5jb20vb2F1dGgyL2RlZmF1bHQiLCJhdWQiOiJhcGk6Ly9kZWZhdWx0IiwiaWF0IjoxNTYwNDAyMjQ0LCJleHAiOjE1NjA0ODg2NDQsImNpZCI6IjBvYW9rYXp4eTB2OEs5UGRVMzU2Iiwic2NwIjpbImh0dHBzOi8vYXBpLnBheW1lbnRzLmF1c3Bvc3QuY29tLmF1L3BheWhpdmUvbWFuYWdlLWFjY291bnRzL3JlYWQiLCJodHRwczovL2FwaS5wYXltZW50cy5hdXNwb3N0LmNvbS5hdS9wYXloaXZlL21hbmFnZS1hY2NvdW50cy93cml0ZSJdLCJzdWIiOiIwb2Fva2F6eHkwdjhLOVBkVTM1NiJ9.Zsv-NGEIUOOucmFl4_a2-E_Kd9GrlRuWvzwwYoU2s8C84PE1dFUzAIoXAs29jPYL3Ceu4t_TtKbm92VG_Oyd85-_pk7nYIli-1SxNSHwIcF8bNMV-mNngXEhjLA_Qm6eT-Ydj6k8Ww47XiDa8fYz48FMmi6f4zU44sEPL3wbNsPTIYEcQxzyO8gPpiKHn-74Gc7XVmFRAKngHr-3WrySevS8CzTlxdk3YJG60LHaivsXoAQ0vaREe4SaTwjlIaxLqfqVihG0B4o4dOlI9pT8gfhTfyb2QnTcyD16uQlUJuXGzlTZmg57mTwNeKmyFAAsOqKTITie-arizOIAtXqb2Q",
 "token_type": "Bearer",
 "expires_in": 86400,
 "scope": "https://api.payments.auspost.com.au/payhive/payments/read https://api.payments.auspost.com.au/payhive/payments/write https://api.payments.auspost.com.au/payhive/payment-instruments/read https://api.payments.auspost.com.au/payhive/payment-instruments/write"
}

 Authentication URL

	Environment	URL
	Sandbox	https://welcome.api2.sandbox.auspost.com.au/oauth/token
	Live	https://welcome.api2.auspost.com.au/oauth/token

 Header Parameters

	Parameter	Required	Description
	Authorization	Required	HTTP Basic Auth header containing your client id and client secret (issued during the on-boarding process). Refer to HTTP Basic Auth for more information.
	Content-Type	Required	Should be set to application/x-www-form-urlencoded.

 Request Parameters

	Parameter	Type	Required	Description
	grant_type	String	Required	The grant_type parameter must be set to client_credentials.
	audience	String	Required	The audience parameter must be set to https://api.payments.auspost.com.au.

Do not parse the response access_token (JWT) on your server side. This is in order to minimise impact should anything change inside the JWT.

 Response

	Name	Type	Description
	access_token	String	The access token string as issued by the server. Access_token issued will have permission to invoke all SecurePay API operations.
	token_type	String	Type of token - bearer
	expires_in	Integer	The duration of time in seconds the access token is granted for.
	scope	String	The scopes assigned to the client

Card Payments
Overview

SecurePay API lives on your website as a customisable User Interface (UI) Component that securely captures customer card details so that payments can be made safely.

Unlike other payment services which will take customers off your website entirely, SecurePay provides a "UI Component" which is embedded on your web page.
While we do use a iframe to achieve this, our functionality is entirely customisable.
The website owner still retains absolute control over the look and feel of the page.

This means that you can customise your payments page exactly how you wish, maintaining total control of your customer experience while leaving the card security (PCI-DSS) and complexity to us.

UI Component:

[image:]

Your PCI footprint

Any business that deals with card information is subject to compliance obligations in order to maintain security to a universal standard.
This universal standard is referred to as being PCI-DSS compliant.

If your website hosts payment fields, you are within PCI scope.
This has several implications for your business, but in summary, it means that you must continuously prove yourself PCI-DSS compliant and live up to a very high security standard.

However, by using the SecurePay integration method, you can minimize your PCI scope significantly.
This is because customer card details never actually touch your system, absolving you of any security obligations that you would otherwise be subject to.

This integration method keeps your data secure, reducing your PCI scope without sacrificing the customer end-to-end experience.

Customer payment card data will be handled with consideration to the PCI DSS requirements applicable to SecurePay API as a service provider.

Adding the UI Component
<!-- Include the SecurePay UI Component. -->
<script id="securepay-ui-js" src="https://payments-stest.npe.auspost.zone/v3/ui/client/securepay-ui.min.js"></script>

<!-- Configure the UI component. -->
<script type="text/javascript">
 var mySecurePayUI = new securePayUI.init({
 containerId: 'securepay-ui-container',
 scriptId: 'securepay-ui-js',
 clientId: 'YOUR_CLIENT_ID',
 merchantCode: 'YOUR_MERCHANT_CODE',
 card: { // card specific config options / callbacks
 onTokeniseSuccess: function(tokenisedCard) {
 // card was successfully tokenised
 // here you could make a payment using the SecurePay API (via your application server)
 },
 onTokeniseError: function(errors) {
 // error while tokenising card
 }
 }
 });
</script>

To add the SecurePay UI Component, include the JavaScript client library and configure the component as shown in the example code.

The UI component will render a card capture form, which you can use capture the data from your users in a PCI DSS compliant way.

[image:]

How it works

(1) The SecurePay UI Component should be initialised on the merchant website within the customer browser. See Javscript SDK - Configuration Object for more information on configuration options.

(2) Once the user has entered their card details, the UI Component's tokenise method needs to be called by the merchant website.
In ddc mode tokenise method should be called after onDCCQuoteSuccess was invoked and customer selected a payment option.

(3) Card information will be tokenised by the SecurePay API.

(4) Tokenised card response is returned to the SecurePay UI Component.

(5) On successful tokenisation, the onTokeniseSuccess will be invoked which includes a token.
 Please note that the card token generated is temporary and expires after 30 minutes. This token is a once-off usage token for one successful payment. To make token reusable, please use the Store Payment Instrument endpoint.

(6) (Optional) To utilise 3DS2, upon successful tokenisation, SecurePay's 3DS2 Javascript should be loaded and initialised and callbacks are configured. See 3DS2 Javascript - SDK

(7) (Optional) Trigger the 3DS2 Authentication process

(8) (Optional) Handle the authentication response.

(9) Merchant server should make use of the token to make a payment to SecurePay API. You must make this payment request from your server. (Optional) For payment authenticated with 3DS2, pass the Order Id initiated in Step 6.

Send the following HTTP request to SecurePay API to make an anonymous payment:

POST https://payments-stest.npe.auspost.zone/v2/payments

curl https://payments-stest.npe.auspost.zone/v2/payments -X POST
 -H "Content-Type: application/json"
 -H "Idempotency-Key: 022361c6-3e59-40df-a58d-532bcc63c3ed"
 -H "Authorization: Bearer xxxxxxxx"
 -d '{ "merchantCode": "YOUR_MERCHANT_CODE",
 "amount": 10000,
 "token": "de305d54-75b4-431b-adb2-eb6b9e546014",
 "ip": "127.0.0.1"
 }'

A successful payment will receive a response similar to the following:

HTTP/1.1 201 Created
CORRELATION-ID: efa12a94-7dd6-4078-a033-7b47aa7dc616
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Connection: keep-alive
Content-Type: application/json;charset=UTF-8

{
 "createdAt": "2021-07-23T13:00:53.128+10:00",
 "amount": 1000,
 "status": "paid",
 "bankTransactionId": "7002157044",
 "customerCode": "anonymous",
 "merchantCode": "AAA000DM000",
 "ip": "127.0.0.1",
 "token": "994634932354242",
 "orderId": "efa12a94-7dd6-4078-a033-7b47aa7dc616"
}

(10) SecurePay API will process the anonymous payment and return a payment response

(11) Merchant server should proxy the payment response back to the merchant website so that an appropriate response can be returned to the customer browser.

JavaScript SDK
Environment Details

	Environment	SecurePay UI JavaScript SDK URL
	Sandbox	https://payments-stest.npe.auspost.zone/v3/ui/client/securepay-ui.min.js
	Live	https://payments.auspost.net.au/v3/ui/client/securepay-ui.min.js

Please note: Consumers of SecurePay UI must not host the script (SecurePay UI JavaScript SDK) themselves.

How does it work?
<!doctype html>
<html>
 <body>
 <form onsubmit="return false;">
 <div id="securepay-ui-container"></div>
 <button onclick="mySecurePayUI.tokenise();">Submit</button>
 <button onclick="mySecurePayUI.reset();">Reset</button>
 </form>
 <script id="securepay-ui-js" src="https://payments-stest.npe.auspost.zone/v3/ui/client/securepay-ui.min.js"></script>
 <script type="text/javascript">
 var mySecurePayUI = new securePayUI.init({
 containerId: 'securepay-ui-container',
 scriptId: 'securepay-ui-js',
 clientId: 'YOUR_CLIENT_ID',
 merchantCode: 'YOUR_MERCHANT_CODE',
 card: { // card specific config and callbacks
 onTokeniseSuccess: function(tokenisedCard) {
 // card was successfully tokenised
 }
 },
 onLoadComplete: function() {
 // the SecurePay UI Component has successfully loaded and is ready to be interacted with
 }
 });
 </script>
 </body>
</html>

To use the SecurePay UI JavaScript SDK, simply:

	include the JavaScript client library
	add a container element for the UI Component
	configure the UI Component

The securepay-ui.min.js client library should be included in your HTML source as shown in the sample code:

<script id="securepay-ui-js" src="https://payments-stest.npe.auspost.zone/v3/ui/client/securepay-ui.min.js"></script>

The script adds a securePayUI object to the global scope.

Please note: the securepay-ui.min.js script should only be included once on your page.

The SecurePayUI object has a single public function init which requires a UI Config object as its only argument:

var mySecurePayUI = new securePayUI.init({ ... });

This is where you pass your clientId and other configuration information.
See UI Config Object for more information.

The SecurePay UI Component is inserted into the containerId DOM element when configured correctly.

An error message will be shown in the browser console if the configuration object is invalid.

Public Methods
 <button onclick="mySecurePayUI.tokenise();">Submit</button>
 <button onclick="mySecurePayUI.reset();">Reset</button>

Two functions are available on the CardPayment object after the UI Component has been created:

	securePayUI.tokenise()
	securePayUI.reset()

These commands are sent to the UI Component using the HTML5 window.postMessage API.

mySecurePayUI.tokenise() will the following action:

	tokenise a new card

mySecurePayUI.reset() will clear the card form fields in Checkout and Add Card view modes.

UI Config Object
<!doctype html>
<html>
 <body>
 <form onsubmit="return false;">
 <div id="securepay-ui-container"></div>
 <button onclick="mySecurePayUI.tokenise();">Submit</button>
 <button onclick="mySecurePayUI.reset();">Reset</button>
 </form>
 <script id="securepay-ui-js" src="https://payments-stest.npe.auspost.zone/v3/ui/client/securepay-ui.min.js"></script>
 <script type="text/javascript">
 var mySecurePayUI = new securePayUI.init({
 containerId: 'securepay-ui-container',
 scriptId: 'securepay-ui-js',
 clientId: 'YOUR_CLIENT_ID',
 merchantCode: 'YOUR_MERCHANT_CODE',
 card: {
 allowedCardTypes: ['visa', 'mastercard'],
 showCardIcons: false,
 onCardTypeChange: function(cardType) {
 // card type has changed
 },
 onBINChange: function(cardBIN) {
 // card BIN has changed
 },
 onFormValidityChange: function(valid) {
 // form validity has changed
 },
 onTokeniseSuccess: function(tokenisedCard) {
 // card was successfully tokenised or saved card was successfully retrieved
 },
 onTokeniseError: function(errors) {
 // tokenization failed
 }
 },
 style: {
 backgroundColor: 'rgba(135, 206, 250, 0.1)',
 label: {
 font: {
 family: 'Arial, Helvetica, sans-serif',
 size: '1.1rem',
 color: 'darkblue'
 }
 },
 input: {
 font: {
 family: 'Arial, Helvetica, sans-serif',
 size: '1.1rem',
 color: 'darkblue'
 }
 }
 },
 onLoadComplete: function () {
 // the UI Component has successfully loaded and is ready to be interacted with
 }
 });
 </script>
 </body>
</html>

	Option	Type	Required	Description
	containerId	string	Yes	The HTML element id where the UI Component is to be inserted
	mode	string	No	Supported modes are checkout and dcc.
Default mode is the checkout mode, it allows payment in AUD currency.
dcc mode provides customers with an option to pay in a currency of the card used for payment. Read more in about dcc mode in Dynamic Currency Conversion section.
	scriptId	string	Yes	The HTML <script> element id which references securepay-ui.min.js
	clientId	string	Yes	Your client id
	merchantCode	string		Required if you have multiple merchant codes associated with your account
	card	card-object	Yes	Specify card specific configuration options and callbacks
	style	style-object		Override default styles (background-color, font-size, font-weight, color)
	checkoutInfo	checkout-info-object	Conditional	Should be present for in dcc mode.

Card Object

	Option	Type	Required	Description
	allowedCardTypes	string[]		Specify which card types are allowed e.g. [visa, mastercard, amex, diners]
	showCardIcons	boolean		Whether card type icons should be shown (false by default)

Style Object

	Option	Type	Required	Description
	backgroundColor	string		Configure the backgroundColor of the UI component. Eg: white #FFFFFF
	label	style-element-object		Configure the fontFamily fontSize color of the label form fields.
	input	style-element-object		Configure the fontFamily fontSize color of the input form fields.

Style Element Object

	Option	Type	Required	Description
	font	font-object		Configure the styling for the fontobject of the element.

Font Object

	Option	Type	Required	Description
	family	string		Configure the font-family of the font for the element. Eg: "Times New Roman", Times, serif
	size	string		Configure the font-size of the font for the element. Eg: 1.25em 12px 10pt
	color	string		Configure the color of the font for the element. Eg: white #FFFFFF

Checkout Info Object

	Option	Type	Required	Description
	orderToken	string	Conditional	Should be present for in dcc mode. A JWT token from Order Details.

Dynamic Currency Conversion

Example of UI Component configured for dcc mode

<!doctype html>
<html>
 <body>
 <form onsubmit="return false;">
 <div id="securepay-ui-container"></div>
 <button onclick="mySecurePayUI.tokenise();">Submit</button>
 <button onclick="mySecurePayUI.reset();">Reset</button>
 </form>
 <script id="securepay-ui-js" src="https://payments-stest.npe.auspost.zone/v3/ui/client/securepay-ui.min.js"></script>
 <script type="text/javascript">
 var mySecurePayUI = new securePayUI.init({
 containerId: 'securepay-ui-container',
 scriptId: 'securepay-ui-js',
 mode: 'dcc',
 checkoutInfo: {
 orderToken: 'YOUR_JWT_TOKEN_FOR_THIS_ORDER'
 },
 clientId: 'YOUR_CLIENT_ID',
 merchantCode: 'YOUR_MERCHANT_CODE',
 card: {
 allowedCardTypes: ['visa', 'mastercard'],
 showCardIcons: false,
 onCardTypeChange: function(cardType) {
 // card type has changed
 },
 onBINChange: function(cardBIN) {
 // card BIN has changed
 },
 onFormValidityChange: function(valid) {
 // form validity has changed
 },
 onDCCQuoteSuccess: function(quote) {
 // dynamic currency conversion quote was retrieved
 },
 onDCCQuoteError: function(errors) {
 // quote retrieval failed
 },
 onTokeniseSuccess: function(tokenisedCard) {
 // card was successfully tokenised or saved card was successfully retrieved
 },
 onTokeniseError: function(errors) {
 // tokenization failed
 }
 },
 style: {
 backgroundColor: 'rgba(135, 206, 250, 0.1)',
 label: {
 font: {
 family: 'Arial, Helvetica, sans-serif',
 size: '1.1rem',
 color: 'darkblue'
 }
 },
 input: {
 font: {
 family: 'Arial, Helvetica, sans-serif',
 size: '1.1rem',
 color: 'darkblue'
 }
 }
 },
 onLoadComplete: function () {
 // the UI Component has successfully loaded and is ready to be interacted with
 }
 });
 </script>
 </body>
</html>

Dynamic Currency Conversion (DCC) is a process in which your customers can make payments on their credit card in the card’s billing currency.

When your customers choose to pay in their own currency For security reasons, do not retrieve a new “access_token”, they lock in the exchange rate at the time of transaction and it remains the same for the lifecycle of the payment.

Please note: to use the Dynamic currency conversion feature merchants must successfully enable this through their account.

Supported currencies are: USD, EUR, NZD, GBP, IDR, CRC, COP, BRL, JMD, ZAR, PHP, ARS, INR, AED, CLP, TTD, UYU, MXN, GYD, HKD, GTQ, JPY, SGD, CHF, NOK, MYR, BBD, TZS, QAR, CAD.

Supported card types are: Visa and Mastercard.

Once your customer enters ten digits of their card number, the dynamic currency conversion quote will be retrieved by the SecurePay UI Component.
If a quote is available for the card currency, exchange rate details are displayed to the customer.
Customer can choose whether to pay in AUD or in the card currency.

The view of UI Component is slightly different depending on card type, see the examples below.

Example for Visa card

[image:]

Example for Mastercard card

[image:]

Prior to loading the UIComponent, a payment order should be initiated by calling Initiate Payment Order from merchant server.
orderToken should be passed from merchant server to merchant website and used to configure UI Config Object.

With DCC tokenise method should be called after onDCCQuoteSuccess was invoked
and Tokenised Card Object will always contain DCC Quote Object.

If your customer chooses to pay in their card’s issued currency which is not AUD, then the converted object in DCC Quote Object will contain foreign currency and amount to charge the customer.
If customer chooses option to pay in AUD, then base field will be present. In this case merchant should charge customer with AUD amount and currency.

DCC receipt format

The DCC transaction receipt must adhere to the below requirements.

[image:]

(1) Must say "Original Transaction Amount" and amount must have AUD prefix

(2) Must say "FX Rate 1 AUD" and show currency code and exchange rate that was returned in Tokenised Card Object in dccQuote.converted.currency and dccQuote.converted.exchangeRate.value fields respectively.

(3) Must say "Including X% margin", where X is taken from dccQuote.converted.exchangeRate.value field returned in Tokenised Card Object

(4) Must say "Final Transactional Amount". Must use foreign currency amount returned in amount field of Payment Object.
Must prefix the amount with foreign currency code, eg. USD taken from currency field of Payment Object.

(5) Must say verbatim "This currency conversion has been provided by Merchant Name. I have been offered a choice of currencies
for payment including AUD and agree to pay in USD", using foreign currency code for this transaction (eg. USD).
It is advised to develop this text as a parameter so it can easily be changed in the future.

Callbacks
...
onTokeniseSuccess: function(tokenisedCard) {
 console.log(tokenisedCard);
}
...

The UI Component sends messages to the client code when various events occur - such as a successful response being received
from a call to securePayUI.tokenise(). These events can be handled by adding callback handler functions to the UI Config object.

The following callbacks are available:

Global SDK Callbacks

	Option	Mode	Description
	onLoadComplete()	checkout, dcc	Invoked when the UI Component has loaded
	onLoadError() - Deprecated	checkout, dcc	Invoked when the UI Component did not load successfully

Card SDK Callbacks

	Option	Mode	Description
	onCardTypeChange(cardType)	checkout, dcc	Invoked when card type changes. Returns the card type ('visa', 'mastercard', 'amex' or 'diners' or 'unknown' if type cannot be determined).
	onCardBINChange(cardBIN)	checkout, dcc	Invoked when BIN changes. Returns the card BIN (Bank Identification Number).
	onFormValidityChange(valid)	checkout, dcc	Invoked when card form validity state changes. Returns a boolean flag indicating form validity.
	onDCCQuoteSuccess(dccQuoteDetails)	dcc	Could be invoked in dcc mode only. Invoked, when quote retrieval of dynamic currency conversion is successful. securePayUI.tokenise() should not be invoke prior receiving this callback, otherwise securePayUI.tokenise() call result in DCC_QUOTE_IN_PROGRESS error provided in onTokeniseError callback.
	onDCCQuoteError(error)	dcc	Could be invoked in dcc mode only. Invoked, when quote retrieval fails, for instance when orderToken is invalid. securePayUI.tokenise() method should not be invoked until UI component is reinitialised with valid configuration details.
	onTokeniseSuccess(tokenisedCard)	checkout, dcc	Invoked when card is successfully tokenised. Returns the Tokenised Card that was created.
	onTokeniseError(error)	checkout, dcc	Invoked when card tokenization failed

Tokenised Card Object

Tokenise Card Object in checkout mode

 {
 "merchantCode": "YOUR_MERCHANT_CODE",
 "token": "520592516621111",
 "createdAt": "2021-07-23T13:00:53.128+10:00",
 "scheme": "visa",
 "bin": "411111",
 "last4": "111",
 "expiryMonth": "10",
 "expiryYear": "20"
 }

Tokenise Card Object in dcc mode when customer chose to pay in card currency

 {
 "merchantCode": "YOUR_MERCHANT_CODE",
 "token": "520592516621111",
 "createdAt": "2021-07-23T13:00:53.128+10:00",
 "scheme": "visa",
 "bin": "411111",
 "last4": "111",
 "expiryMonth": "10",
 "expiryYear": "20",
 "dccQuote": {
 "converted": {
 "currency": "USD",
 "amount": "1285",
 "exchangeRate": {
 "value": "1.0946",
 "markup": "3.50"
 }
 }
 }
 }

Tokenise Card Object in dcc mode when customer chose to pay in AUD

 {
 "merchantCode": "YOUR_MERCHANT_CODE",
 "token": "520592516621111",
 "createdAt": "2021-07-23T13:00:53.128+10:00",
 "scheme": "visa",
 "bin": "411111",
 "last4": "111",
 "expiryMonth": "10",
 "expiryYear": "20",
 "dccQuote": {
 "base": {
 "currency": "AUD"
 }
 }
 }

	Name	Description
	merchantCode	If you're collecting payments on behalf of other merchants (e.g. Post Bill Pay), this parameter allows you to uniquely identify the merchant.
	token	A tokenised payment instrument reference. Use this token in make payment call. Please note that the card token generated is temporary and expires after 30 minutes. This token is a once-off usage token for one successful payment. To make the token reusable, please use Store Payment Instrument endpoint.
	createdAt	A timestamp when card was tokenised, in ISO Date Time format with offset from UTC/Greenwich e.g. 2021-07-23T13:00:53.128+10:00.
	scheme	A card scheme, e.g. visa, mastercard, diners, amex.
	bin	Bank identification number.
	last4	The last 3 digits of the card number. (Please note the number of digits returned may vary due to the card scheme)
	expiryMonth	Two digit number representing the card expiry month.
	expiryYear	Two digit number representing the card expiry year.
	dccQuote	Dynamic currency conversion quote, will be present in dcc mode only.

DCC Quote Object

Returned in dccQuote object in Tokenised Card Object

	Name	Description
	base.currency	Present if customer chose to pay in AUD or conversion rate was unavailable. Supported value: AUD.
	converted	Present if customer chose to pay in card currency which is not AUD, contains foreign currency and amount to charge the customer. Refer to Converted Object for field details.

DCC Quote Details Object

Returned on successful quote retrieval in onDCCQuoteSuccess callback

DCC quote details object

 {
 "base": {
 "currency": "AUD"
 },
 "converted": {
 "currency": "USD",
 "amount": "1285",
 "exchangeRate": {
 "value": "1.0946",
 "markup": "3.50"
 }
 }
 }

	Name	Description
	base.currency	Contains the original currency for the order. Supported value: AUD.
	converted	If present contains details of dynamic currency conversion rate that will be presented to the customer. See Converted Object for details.

Converted Object

	Name	Description
	currency	Populated with card currency.
	amount	Populated with converted amount in card currency in a lower denomination.
	exchangeRate	Populated with Exchange rate.

Exchange rate object

	Name	Description
	value	Exchange rate that was retrieved for a card currency.
	markup	An agreed upon markup value added to the initial AUD amount before conversion, which is charged to the customer upon final payment.

Error Object
 {
 "errors": [
 {
 "id": "1a909ec1-c96c-4ced-a471-d145a0e517ef",
 "code": "MIN_CONSTRAINT_VIOLATION",
 "detail": "must be greater than or equal to 1",
 "source": {
 "pointer": "amount"
 }
 }
]
 }

	Name	Required	Description
	id	Yes	Unique identifier for the error
	code	Yes	Endpoint specific error code
	detail	Yes	Detailed error description
	source.pointer	No	If error is related to specific field in request this param will be populated with field name

Rest API

Please note that for all requests timeout is 30 seconds.

The URLs mentioned throughout the Rest API documentation and in the code samples are for the sandbox environment.

To ensure you're using the correct URL please refer to Environment details.

To make a payment, use this code:

POST https://payments-stest.npe.auspost.zone/v2/payments

curl https://payments-stest.npe.auspost.zone/v2/payments -X POST
 -H "Content-Type: application/json"
 -H "Idempotency-Key: 022361c6-3e59-40df-a58d-532bcc63c3ed"
 -H "Authorization: Bearer xxxxxxxx"
 -d '{ "amount": 10000,
 "merchantCode": "YOUR_MERCHANT_CODE",
 "token": "de305d54-75b4-431b-adb2-eb6b9e546014",
 "ip": "127.0.0.1",
 "orderId": "0475f32d-fc23-4c02-b19b-9fe4b0a848ac"
 }'

{
 "createdAt": "2021-07-23T13:00:53.128+10:00",
 "merchantCode": "YOUR_MERCHANT_CODE",
 "customerCode": "anonymous",
 "token": "de305d54-75b4-431b-adb2-eb6b9e546014",
 "ip": "127.0.0.1",
 "amount": "10000",
 "currency": "AUD",
 "status": "paid",
 "orderId": "0475f32d-fc23-4c02-b19b-9fe4b0a848ac",
 "bankTransactionId": "de305d54-75b4-431b-adb2-eb6b9e546014",
 "gatewayResponseCode": "00",
 "gatewayResponseMessage": "Transaction successful"
}

Example of declined payment:

POST https://payments-stest.npe.auspost.zone/v2/payments

curl https://payments-stest.npe.auspost.zone/v2/payments -X POST
 -H "Content-Type: application/json"
 -H "Idempotency-Key: 022361c6-3e59-40df-a58d-532bcc63c3ed"
 -H "Authorization: Bearer xxxxxxxx"
 -d '{ "amount": 10051,
 "merchantCode": "YOUR_MERCHANT_CODE",
 "token": "de305d54-75b4-431b-adb2-eb6b9e546014",
 "ip": "127.0.0.1",
 "orderId": "0475f32d-fc23-4c02-b19b-9fe4b0a848ac"
 }'

{
 "createdAt": "2021-07-23T13:00:53.128+10:00",
 "amount": 10051,
 "currency": "AUD",
 "status": "failed",
 "bankTransactionId": "824565",
 "gatewayResponseCode": "51",
 "gatewayResponseMessage": "Not sufficient funds",
 "errorCode": "INSUFFICIENT_FUNDS",
 "customerCode": "anonymous",
 "merchantCode": "YOUR_MERCHANT_CODE",
 "ip": "127.0.0.1",
 "token": "1117760467699043",
 "orderId": "6f3e0642-187d-46b3-9f9f-1af3d8e344a0"
}

Create Payment

Make a payment for a given card token.

Token for anonymous payments expires after 30 minutes.

HTTP Request

POST https://payments-stest.npe.auspost.zone/v2/payments

Header Parameters

	Parameter	Required	Description
	Authorization	Required	Bearer Access Token. Refer to client credentials for more information on obtaining an access token.
	Idempotency-Key	Optional	This key allows a client to safely retry the payment request if it fails to receive a response from the server, e.g. due to a network connection error, etc. The server guarantees to process a payment only once if the same key is used across multiple transactions. It is important for the client to generate random keys, hence the use of UUIDs is strongly encouraged but not enforced by the application. If not passed orderId will be used as Idempotency-Key.
	Content-Type	Required	Should be set to application/json.

Request Parameters

	Parameter	Type	Required	Description
	merchantCode	String	Required	Merchant account for which the funds are collected.
	token	String	Required	A tokenised payment instrument reference. This value is used by the payment gateway to retrieve the actual card information, which is then used to perform the transaction.
	ip	String	Required	A customer IP address. Must be a valid IPv4 or IPv6.
	amount	Integer	Required	An integer value greater than 0, for AUD payments representing the total amount in cents to charge the provided (tokenised) payment instrument. For dynamic currency conversion payments this field should be set to the value of dccQuote.amount field provided in tokenise card object. Please note the amount field must be sent in cents i.e. if you are sending $1.00, the amount value should be 100. Do not send float values (1.00 will be treated as 1 cent).
	currency	String	Optional	Payment currency. Default value is AUD. Non AUD payments are supported for dynamic currency conversion payments only. For dynamic currency conversion payments this field should be set to the value of dccQuote.currency field provided in tokenise card object.
	orderId	String	Optional	A client order id, will be used as reference to the payment. If not provided, SecurePay API will assign a unique id for the order. Note: < > " characters are not allowed in orderId.
	customerCode	String	Optional	A unique (within your organisation) identifier of your customer. Should not be longer than 30 characters. This is used when you want to perform a payment against a stored payment instrument. Please note anonymous is a reserved keyword and must not be used.
	fraudCheckDetails	String	Optional	A payment fraud check details object.
	dccDetails	Object	Optional	A dynamic currency conversion details object. Should be present for dynamic currency conversion payments.
	threedSecureDetails	Object	Optional	A 3DS2 details Object. Required for payments authenticated with 3DS2.

Response

The Payment that was successfully created.

Refund Payment

Used to refund a previous payment. Can only be used for AUD transactions.

For DCC transactions, only full refunds are supported and are only available via the SecurePay Merchant Portal.

To refund payment, use this code:

POST https://payments-stest.npe.auspost.zone/v2/orders/{orderId}/refunds

curl https://payments-stest.npe.auspost.zone/v2/orders/{orderId}/refunds -X POST
 -H "Content-Type: application/json"
 -H "Authorization: Bearer xxxxxxxx"
 -d '{ "amount": 10000,
 "merchantCode": "YOUR_MERCHANT_CODE",
 "ip": "127.0.0.1"
 }'

{
 "createdAt": "2021-07-23T13:00:53.128+10:00",
 "merchantCode": "YOUR_MERCHANT_CODE",
 "customerCode" : "anonymous",
 "amount": 10000,
 "status": "paid",
 "orderId": "0475f32d-fc23-4c02-b19b-9fe4b0a848ac",
 "bankTransactionId": "de305d54-75b4-431b-adb2-eb6b9e546014",
 "gatewayResponseCode": "00",
 "gatewayResponseMessage": "Approved"
}

 HTTP Request

POST https://payments-stest.npe.auspost.zone/v2/orders/{orderId}/refunds

 Header Parameters

	Parameter	Required	Description
	Authorization	Required	Bearer Access Token. Refer to client credentials for more information on obtaining an access token.
	Content-Type	Required	Should be set to application/json.

 Path Variables

	Parameter	Description
	orderId	A customer order id which was successfully processed previously and the merchant now wants to refund it.

 Request Parameters

	Parameter	Type	Required	Description
	merchantCode	String	Required	Merchant account for which the funds are collected.
	ip	String	Required	A customer IP address. Must be a valid IPv4 or IPv6.
	amount	Integer	Required	An integer value greater than 0, representing the total amount in cents to refund. The amount will be refunded to the same payment instrument from which the payment was made for the order. The amount value to be refunded should be less then or equal to the actual paid amount. Please note the amount field must be sent in cents i.e. if you are sending $1.00, the amount value should be 100. Do not send float values (1.00 will be treated as 1 cent).

 Response

The Refund that was successfully created.

Create Account Verification Transaction

An account verification is a $0 transaction used to verify the card details and its validity without impacting the customer’s available funds.

To process an Account Verification transaction, use this code:

POST https://payments-stest.npe.auspost.zone/v2/payments/account-verification

curl https://payments-stest.npe.auspost.zone/v2/payments/account-verification -X POST
 -H "Content-Type: application/json"
 -H "Authorization: Bearer XXXXXXXXXXXX"
 -D'{ "merchantCode": "YOUR_MERCHANT_CODE",
 "token": "de305d54-75b4-431b-adb2-eb6b9e546014",
 "ip": "127.0.0.1",
 "orderId": "0475f32d-fc23-4c02-b19b-9fe4b0a848ac"
 }'

{
 "createdAt": "2021-07-23T13:00:53.128+10:00",
 "merchantCode": "YOUR_MERCHANT_CODE",
 "token": "de305d54-75b4-431b-adb2-eb6b9e546014",
 "ip": "127.0.0.1",
 "status": "success",
 "orderId": "0475f32d-fc23-4c02-b19b-9fe4b0a848ac",
 "gatewayResponseCode": "00",
 "gatewayResponseMessage": "Transaction successful"
}

This transaction type is supported by Visa and Mastercard only and available on selected acquiring banks (NAB, ANZ, Westpac Qvalent and Fiserv FDMSA). Refer to SecurePay’s website FAQs for more information.

 HTTP Request

POST https://payments-stest.npe.auspost.zone/v2/payments/account-verification

 Header Parameters

	Parameter	Required	Description
	Authorization	Required	Bearer Access Token. Refer to client credentials for more information on obtaining an access token.
	Content-Type	Required	Should be set to application/json.

 Request Parameters

	Parameter	Type	Required	Description
	merchantCode	String	Required	Merchant account for which the Account Verification transaction is processed against.
	token	String	Required	A tokenised payment instrument reference. This value is used by the payment gateway to retrieve the actual card information, which is then used to perform the transaction.
	ip	String	Required	A customer IP address. Must be a valid IPv4 or IPv6.
	orderId	String	Optional	A client order id, will be used as reference to the Account Verification. Note: < > " characters are not allowed in orderId.
	fraudCheckDetails	Object	Optional	A account verification fraud check details object..

 Response

The Account Verification that was successfully created.

Create PreAuth/InitialAuth Transaction

Used to pre-authorise a transaction against a token.

A pre-authorisation is used when wanting to reserve funds on a customer's credit card, which is generally held for five to ten business days. The time duration all depends on the cardholder's bank. During that time, you can “complete” the transaction to capture the funds.

To perform a standard pre-authorisation where you will only have the option of capturing the funds, is by passing PRE_AUTH in the preAuthType parameter field of the request.

For merchants that do not know the final amount when the transaction begins, they can process an initial authorisation transaction. An initial authorisation transaction is a flexible pre-authorisation that allows you to increase or decrease the actual amount when it’s known. You can process an initial authorisation transaction by passing INITIAL_AUTH in the preAuthType parameter field of the request. Please note initial authorisation is supported by Visa and Mastercard only, available on selected acquiring banks (NAB, ANZ, Westpac Qvalent and Fiserv FDMSA) and can be used by merchants in certain industry categories. Refer SecurePay’s website FAQs for more information.

To process a pre-auth/initial-auth transaction, use this code:

POST https://payments-stest.npe.auspost.zone/v2/payments/preauths

curl https://payments-stest.npe.auspost.zone/v2/payments/preauths -X POST
 -H "Content-Type: application/json"
 -H "Authorization: Bearer xxxxxxxx"
 -d '{ "amount": 10000,
 "preAuthType": "INITIAL_AUTH",
 "merchantCode": "YOUR_MERCHANT_CODE",
 "token": "de305d54-75b4-431b-adb2-eb6b9e546014",
 "ip": "127.0.0.1",
 "orderId": "0475f32d-fc23-4c02-b19b-9fe4b0a848ac"
 }

{
 "createdAt": "2021-07-23T13:00:53.128+10:00",
 "merchantCode": "YOUR_MERCHANT_CODE",
 "token": "de305d54-75b4-431b-adb2-eb6b9e546014",
 "ip": "127.0.0.1",
 "amount": "10000",
 "status": "paid",
 "orderId": "0475f32d-fc23-4c02-b19b-9fe4b0a848ac",
 "bankTransactionId": "de305d54-75b4-431b-adb2-eb6b9e546014",
 "gatewayResponseCode": "00",
 "gatewayResponseMessage": "Transaction successful"
}

To capture a standard pre-auth or initial-auth transaction please go to Capture PreAuth/InitialAuth Transaction.

If you would like to increase or cancel an approved initial-auth transaction, please go to Increase InitialAuth Transaction / Cancel InitialAuth Transaction

 HTTP Request

POST https://payments-stest.npe.auspost.zone/v2/payments/preauths

 Header Parameters

	Parameter	Required	Description
	Authorization	Required	Bearer Access Token. Refer to client credentials for more information on obtaining an access token.
	Content-Type	Required	Should be set to application/json.

 Request Parameters

	Parameter	Type	Required	Description
	merchantCode	String	Required	Merchant account for which the funds are collected.
	preAuthType	String	Optional	This parameter defines which type of pre-authorisation is performed. Supported types are PRE_AUTH and INITIAL_AUTH. Default value is PRE_AUTH.
	token	String	Required	A tokenised payment instrument reference. This value is used by the payment gateway to retrieve the actual card information, which is then used to perform the transaction.
	ip	String	Required	A customer IP address. Must be a valid IPv4 or IPv6.
	amount	Integer	Required	An integer value greater than 0, representing the total amount in cents to charge the provided (tokenised) payment instrument. Please note the amount field must be sent in cents i.e. if you are sending $1.00, the amount value should be 100. Do not send float values (1.00 will be treated as 1 cent).
	orderId	String	Optional	A client order id, will be used as reference to the payment. Note: < > " characters are not allowed in orderId.
	customerCode	String	Optional	A unique (within your organisation) identifier of your customer. Should not be longer than 30 characters. This is used when you want to perform a pre-auth payment against a stored payment instrument. Please note anonymous is a reserved keyword and must not be used.
	fraudCheckDetails	Object	Optional	A preAuth fraud check details object.
	threedSecureDetails	Object	Optional	A 3DS2 details Object. Required for payments authenticated with 3DS2.

 Response

The PreAuth Payment that was successfully created.

Increase InitialAuth Transaction

Used to increase an initial-auth transaction, using its order id.

Increment can't occur after a capture or a full cancellation has already been made.

To Increase an initial-auth transaction, use this code:

POST https://payments-stest.npe.auspost.zone/v2/payments/preauths/{orderId}/increase

curl https://payments-stest.npe.auspost.zone/v2/payments/preauths/69d49ae5-a6f5-4627-8f7d-8f736011d028/increase -X POST
 -H "Content-Type: application/json"
 -H "Authorization: Bearer xxxxxxxx"
 -d '{ "merchantCode": "YOUR_MERCHANT_CODE",
 "ip": "127.0.0.1",
 "amount": 5000
 }'

{
 "createdAt": "2020-07-16T14:26:07.401+10:00",
 "amount": 5000,
 "status": "paid",
 "bankTransactionId": "de305d54-75b4-431b-adb2-eb6b9e546014",
 "gatewayResponseCode": "00",
 "gatewayResponseMessage": "Transaction successful",
 "merchantCode": "YOUR_MERCHANT_CODE",
 "ip": "127.0.0.1",
 "orderId": "564966e8-2d7d-4bce-b0ed-33f26d751ba5"
}

Used to increase a pre-authorisation transaction of type INITIAL_AUTH only.

NOTE:

	Preauth-Increments are only available on Visa or Mastercard and on selected (NAB, ANZ, Westpac Qvalent and Fiserv FDMSA) acquiring banks and can be used by merchants in certain industry categories. Refer to the SecurePay website FAQs for more information.
	For Visa transactions an Increase InitialAuth Transaction request will result in an amount increase only, it will not affect the validity period of the authorisation. The amount passed in an Increase InitialAuth Transaction request should be greater than zero for Visa transactions.
	For Mastercard transactions an Increase InitialAuth Transaction request will result in an amount increase and extension of the validity period. To extend the validity period for Mastercard transactions only, you will have to pass a zero value in the amount field of the request.

HTTP Request

POST https://payments-stest.npe.auspost.zone/v2/payments/preauths/{orderId}/increase

Path Variables

	Parameter	Description
	orderId	The order id used for pre-auth payment.

Header Parameters

	Parameter	Required	Description
	Authorization	Required	Bearer Access Token. Refer to client credentials for more information on obtaining an access token.
	Content-Type	Required	Should be set to application/json.

Request Parameters

	Parameter	Type	Required	Description
	ip	String	Required	A customer IP address. Must be a valid IPv4 or IPv6.
	merchantCode	String	Required	Merchant account for which the funds are collected.
	amount	Integer	Required	An integer value greater than or equal to 0, representing the increase amount. Refer to note section for more details. Please note the amount field must be sent in cents i.e. if you are sending $1.00, the amount value should be 100. Do not send float values (1.00 will be treated as 1 cent).

Response

The Increase PreAuth Payment Object that was successfully increased.

Cancel InitialAuth Transaction

Used to cancel an initial-authorisation transaction using its order id.

Cancellation is always for the full or partial amount. Also cancellation can't occur after a capture or a full amount has already been cancelled.

To cancel an initial-auth transaction, use this code:

POST https://payments-stest.npe.auspost.zone/v2/payments/preauths/{orderId}/cancel

curl https://payments-stest.npe.auspost.zone/v2/payments/preauths/69d49ae5-a6f5-4627-8f7d-8f736011d028/cancel -X POST
 -H "Content-Type: application/json"
 -H "Authorization: Bearer xxxxxxxx"
 -d '{ "merchantCode": "YOUR_MERCHANT_CODE",
 "ip": "127.0.0.1",
 "amount": 5000
 }'

{
 "merchantCode": "YOUR_MERCHANT_CODE",
 "ip": "127.0.0.1",
 "orderId": "d2b65e49-e163-43ca-bd72-78dafsfe79-78g1d4c23",
 "amount": 5000,
 "gatewayResponseCode": "00",
 "gatewayResponseMessage": "Transaction successful"
}

Used to cancel pre-authorisation payment of type INITIAL_AUTH only.

NOTE:

Preauth-Cancellations are only available on Visa or Mastercard and on selected (NAB, ANZ*, Westpac Qvalent and Fiserv FDMSA) acquiring banks and can be used by merchants in certain industry categories. Refer to the SecurePay website FAQs for more information.

* The ANZ acquirer doesn’t currently support partial cancellations, only full cancellations can be made.

HTTP Request

POST https://payments-stest.npe.auspost.zone/v2/payments/preauths/{orderId}/cancel

Path Variables

	Parameter	Description
	orderId	The order id used for pre-auth payment.

Header Parameters

	Parameter	Required	Description
	Authorization	Required	Bearer Access Token. Refer to client credentials for more information on obtaining an access token.
	Content-Type	Required	Should be set to application/json.

Request Parameters

	Parameter	Type	Required	Description
	ip	String	Required	A customer IP address. Must be a valid IPv4 or IPv6.
	merchantCode	String	Required	Merchant account for which the funds are collected.
	amount	Integer	Optional	An integer value greater than 0, representing an amount in cents to cancel. If the amount field is not present, the full amount that is left of the initial-authorisation will be cancelled. Refer to note section for more details. Please note the amount field must be sent in cents i.e. if you are sending $1.00, the amount value should be 100. Do not send float values (1.00 will be treated as 1 cent).

Response

The Cancel InitialAuth Payment Object that was successfully cancelled.

Capture PreAuth/InitialAuth Transaction

Used to capture a pre-authorisation transaction using its order id. This is applicable for both pre-auth types: PRE_AUTH and INTIAL_AUTH

A capture must be completed for the full amount of the pre-auth, it can't be less (partial capture) or more (over capture).
Also capture can only be done once and can't occur after a cancellation has been made.

To capture a pre-auth/initial-auth transaction, use this code:

POST https://payments-stest.npe.auspost.zone/v2/payments/preauths/{orderId}/capture

curl https://payments-stest.npe.auspost.zone/v2/payments/preauths/{orderId}/capture -X POST
 -H "Content-Type: application/json"
 -H "Authorization: Bearer xxxxxxxx"
 -d '{ "amount": 10000,
 "merchantCode": "YOUR_MERCHANT_CODE",
 "ip": "127.0.0.1"
 }'

{
 "createdAt": "2021-07-23T13:00:53.128+10:00",
 "merchantCode": "YOUR_MERCHANT_CODE",
 "ip": "127.0.0.1",
 "amount": 1000,
 "status": "paid",
 "orderId": "d2b65e49-e163-43ca-bd72-78dafsfe79-78g1d4c23",
 "bankTransactionId": "731627310",
 "gatewayResponseCode": "00",
 "gatewayResponseMessage": "Transaction successful"
}

 HTTP Request

POST https://payments-stest.npe.auspost.zone/v2/payments/preauths/{orderId}/capture

 Path Variables

	Parameter	Description
	orderId	The order id used for pre-auth payment.

 Header Parameters

	Parameter	Required	Description
	Authorization	Required	Bearer Access Token. Refer to client credentials for more information on obtaining an access token.
	Content-Type	Required	Should be set to application/json.

 Request Parameters

	Parameter	Type	Required	Description
	merchantCode	String	Required	Merchant account for which the funds are collected.
	ip	String	Required	A customer IP address. Must be a valid IPv4 or IPv6.
	amount	Integer	Required	An integer value greater than 0, representing the total amount in cents to charge the provided (tokenised) payment instrument. Note: The amount has to be equal to the pre-auth txn amount. Please note the amount field must be sent in cents i.e. if you are sending $1.00, the amount value should be 100. Do not send float values (1.00 will be treated as 1 cent).

 Response

The Capture Payment Object that was successfully created.

Create Payment (Stored Payment Instrument)

To make payment for a customer, use this code:

POST https://payments-stest.npe.auspost.zone/v2/customers/{customerCode}/payments

curl https://payments-stest.npe.auspost.zone/v2/customers/{customerCode}/payments -X POST
 -H "Content-Type: application/json"
 -H "Idempotency-Key: 022361c6-3e59-40df-a58d-532bcc63c3ed"
 -H "Authorization: Bearer xxxxxxxx"
 -d '{ "amount": 10000,
 "merchantCode": "YOUR_MERCHANT_CODE",
 "token": "de305d54-75b4-431b-adb2-eb6b9e546014",
 "ip": "127.0.0.1",
 "orderId": "0475f32d-fc23-4c02-b19b-9fe4b0a848ac"
 }'

{
 "createdAt": "2021-07-23T13:00:53.128+10:00",
 "customerCode": "YOUR_CUSTOMER_CODE",
 "merchantCode": "YOUR_MERCHANT_CODE",
 "token": "de305d54-75b4-431b-adb2-eb6b9e546014",
 "amount": "10000",
 "currency": "AUD",
 "status": "paid",
 "ip": "127.0.0.1",
 "orderId": "0475f32d-fc23-4c02-b19b-9fe4b0a848ac",
 "bankTransactionId": "de305d54-75b4-431b-adb2-eb6b9e546014"
}

Makes a payment for a logged in customer.

 HTTP Request

Please note this endpoint is deprecated. You can now achieve the same functionality by passing the field `customerCode` in the create payment request endpoint.

POST https://payments-stest.npe.auspost.zone/v2/customers/{customerCode}/payments

 Path Variables

	Parameter	Description
	customerCode	A unique (within your organisation) identifier of your customer. Should not be longer than 30 characters. Please note anonymous is a reserved keyword and must not be used.

 Header Parameters

	Parameter	Required	Description
	Authorization	Required	Bearer Access Token. Refer to client credentials for more information on obtaining an access token.
	Idempotency-Key	Optional	This key allows a client to safely retry the payment request if it fails to receive a response from the server, e.g. due to a network connection error, etc. The server guarantees to process a payment only once if the same key is used across multiple transactions. It is important for the client to generate random keys, hence the use of UUIDs is strongly encouraged but not enforced by the application. If not passed orderId will be used as Idempotency-Key.
	Content-Type	Required	Should be set to application/json.

 Request Parameters

	Parameter	Type	Required	Description
	merchantCode	String	Required	Merchant account for which the funds are collected.
	token	String	Required	A tokenised payment instrument reference. This value is used by the payment gateway to retrieve the actual card information, which is then used to perform the transaction.
	ip	String	Required	A customer IP address. Must be a valid IPv4 or IPv6.
	amount	Integer	Required	An integer value greater than 0, representing the total amount in cents to charge the provided (tokenised) payment instrument. Please note the amount field must be sent in cents i.e. if you are sending $1.00, the amount value should be 100. Do not send float values (1.00 will be treated as 1 cent).
	orderId	String	Optional	A client order id, will be used as reference to the payment. Note: < > " characters are not allowed in orderId.

 Response

The Payment that was successfully created.

Initiate Payment Order

Initiates a payment order.
A Payment order has to be initiated prior making either a dynamic currency conversion (DCC) payment or a 3DS2 payment request.

The response from this request includes orderId required for Create Payment and orderToken required to retrieve a conversion rate by UI component (DCC) or to request 3DS2 authentication. The response for an 3DS2 order request will also include a threedSecureDetails object with fields required during 3DS2 Authentication i.e. providerClientId, sessionId & simpleToken.
Note that orderToken expires after 10 minutes.

To create a payment order, use this code:

POST https://payments-stest.npe.auspost.zone/v2/payments/orders/initiate

curl https://payments-stest.npe.auspost.zone/v2/payments/orders/initiate -X POST
 -H "Content-Type: application/json"
 -H "Authorization: Bearer XXXXXXXXXXXX"
 -D'{ "merchantCode": "YOUR_MERCHANT_CODE",
 "amount": 10000,
 "ip": "127.0.0.1",
 "orderReference": "Your reference for this order",
 "orderType": "DYNAMIC_CURRENCY_CONVERSION"
 }'

{
 "ip": "127.0.0.1",
 "orderReference": "Your reference for this order",
 "merchantCode": "YOUR_MERCHANT_CODE",
 "orderType": "DYNAMIC_CURRENCY_CONVERSION",
 "amount": 10000,
 "orderId": "2551d30c-250c-4d9d-afe6-3b6f2cab1ccf",
 "orderToken": "YOUR_JWT_TOKEN_FOR_THIS_ORDER",
 "createdAt": "2021-02-04T14:01:54.839+11:00"
}

 HTTP Request

POST https://payments-stest.npe.auspost.zone/v2/payments/orders/initiate

 Header Parameters

	Parameter	Required	Description
	Authorization	Required	Bearer Access Token. Refer to client credentials for more information on obtaining an access token.
	Content-Type	Required	Should be set to application/json.

 Request Parameters

	Parameter	Type	Required	Description
	merchantCode	String	Required	Merchant account for which the funds are collected.
	ip	String	Required	A customer IP address. Must be a valid IPv4 or IPv6.
	amount	Integer	Required	An integer value greater than 0 in AUD, representing the total amount in cents. Please note the amount field must be sent in cents i.e. if you are sending $1.00, the amount value should be 100. Do not send float values (1.00 will be treated as 1 cent).Please note, for 3DS2 authentication payment order, amount should match the amount during authorisation.
	orderType	String	Required	A type of the order to create. Currently supported types: DYNAMIC_CURRENCY_CONVERSION or THREED_SECURE.
	orderReference	String	Optional	A client order reference, could be used as reference to the order.

 Response

The Order Details that was successfully created.

Create Payment Instrument

Allows management of tokenised payment instruments against organisation's users. This service does not directly manage the users (i.e. there is no "user" resource), that is left up to the consuming application.

To store payment instrument, use this code:

POST https://payments-stest.npe.auspost.zone/v2/customers/{customerCode}/payment-instruments/token

curl https://payments-stest.npe.auspost.zone/v2/customers/{customerCode}/payment-instruments/token -X POST
 -H "Content-Type: application/json"
 -H "Authorization: Bearer xxxxxxxx"
 -H "token: de305d54-75b4-431b-adb2-eb6b9e546014"
 -H "ip: 127.0.0.1"

{
 "createdAt": "2021-07-23T13:00:53.128+10:00",
 "customerCode": "YOUR_CUSTOMER_CODE",
 "token": "de305d54-75b4-431b-adb2-eb6b9e546014",
 "brandType": "credit",
 "brandCategory": "standard",
 "scheme": "visa",
 "bin": "424242",
 "last4": "242",
 "expiryMonth": "01",
 "expiryYear": "19"
}

Stores a tokenised payment instrument against a customer identifier within the organisation (the organisation identifier is derived from authentication credentials).

 HTTP Request

POST https://payments-stest.npe.auspost.zone/v2/customers/{customerCode}/payment-instruments/token

 Path Variables

	Parameter	Description
	customerCode	A unique (within your organisation) identifier of your customer. Should not be longer than 30 characters. Please note anonymous is a reserved keyword and must not be used.

 Header Parameters

	Parameter	Required	Description
	Authorization	Required	Bearer Access Token. Refer to client credentials for more information on obtaining an access token.
	Content-Type	Required	Should be set to application/json.
	token	Required	A tokenised payment instrument reference. This value is used by the payment gateway to retrieve the actual card information, which is then used to perform the transaction.
	ip	Required	A customer IP address. Must be a valid IPv4 or IPv6.

 Response

The Payment Instrument Object that was successfully created.

Payment Instruments

To retrieve payment instruments, use this code:

GET https://payments-stest.npe.auspost.zone/v2/customers/{customerCode}/payment-instruments

curl https://payments-stest.npe.auspost.zone/v2/customers/{customerCode}/payment-instruments -X GET
 -H "Content-Type: application/json"
 -H "Authorization: Bearer xxxxxxxx"
 -H "ip: 127.0.0.1"

{
 "paymentInstruments": [
 {
 "createdAt": "2021-07-23T13:00:53.128+10:00",
 "customerCode": "YOUR_CUSTOMER_CODE",
 "token": "de305d54-75b4-431b-adb2-eb6b9e546014",
 "brandType": "credit",
 "brandCategory": "standard",
 "scheme": "visa",
 "bin": "424242",
 "last4": "242",
 "expiryMonth": "01",
 "expiryYear": "19"
 }
]
}

Retrieves stored payment instruments from the vault for an identified customer.

 HTTP Request

GET https://payments-stest.npe.auspost.zone/v2/customers/{customerCode}/payment-instruments

If you currently have sub-accounts within your main account with SecurePay, please be aware that in the near future, this API will return stored instruments associated to the provided customerCode across all your sub-accounts.
We kindly advise you to adjust your integration plans accordingly.

 Path Variables

	Parameter	Description
	customerCode	A unique (within your organisation) identifier of your customer. Should not be longer than 30 characters. Please note anonymous is a reserved keyword and must not be used.

 Header Parameters

	Parameter	Required	Description
	Authorization	Required	Bearer Access Token. Refer to client credentials for more information on obtaining an access token.
	Content-Type	Required	Should be set to application/json.
	ip	Required	A customer IP address. Must be a valid IPv4 or IPv6.

 Response

The current list of Payment Instrument Object that exist.

Delete Payment Instrument

To delete payment instrument, use this code:

DELETE https://payments-stest.npe.auspost.zone/v2/customers/{customerCode}/payment-instruments/token

curl https://payments-stest.npe.auspost.zone/v2/customers/{customerCode}/payment-instruments/token -X DELETE
 -H "Content-Type: application/json"
 -H "Authorization: Bearer xxxxxxxx"
 -H "token: de305d54-75b4-431b-adb2-eb6b9e546014"
 -H "ip: 127.0.0.1"

{
 "customerCode": "DE8482",
 "token": "1da87a11-4242-4163-883b-cded6d839a44",
 "deleted": true
}

Deletes a previously stored payment instrument from the vault.

 HTTP Request

DELETE https://payments-stest.npe.auspost.zone/v2/customers/{customerCode}/payment-instruments/token

 Path Variables

	Parameter	Description
	customerCode	A unique (within your organisation) identifier of your customer. Should not be longer than 30 characters. Please note anonymous is a reserved keyword and must not be used.

 Header Parameters

	Parameter	Required	Description
	Authorization	Required	Bearer Access Token. Refer to client credentials for more information on obtaining an access token.
	Content-Type	Required	Should be set to application/json.
	ip	Required	A customer IP address. Must be a valid IPv4 or IPv6.

 Response

	Name	Type	Description
	customerCode	String	A unique (within your organisation) identifier of your customer. This value is used for security to validate that the logged in customer owns the payment instrument that is to be deleted.
	token	String	A tokenised payment instrument reference. This value uniquely identifies a payment instrument in the vault.
	deleted	Boolean	Status of deleted record. This should have a value of true if the record was found and deleted or false if no record matches the request parameters.

Payment Objects
Payment Fraud Check Details Object

If FraudGuard rules needs to be applied before attempting the payment, fraudCheckType should be populated with FRAUD_GUARD value and relevant order details could be passed in the request.

If the fraud check has been performed via FraudGuard or ACI Red Shield Fraud detection endpoints, the provider reference number of the fraud check result could be passed as a part of payment request.

	Name	Type	Required	Description
	providerReferenceNumber	String	Conditional	The provider reference number returned by FraudGuard or ACI Red Shield Fraud Detection Endpoints can be found in FraudGuard or ACI Red Shield Check Result Objects.
	fraudCheckType	String	Conditional	If FraudGuard rules needs to be applied before attempting the payment, fraudCheckType should be populated with FRAUD_GUARD value.
	customerDetails	Object	Optional	The Customer Details Object.
	shippingAddress	Object	Optional	The Shipping Address Object.
	billingAddress	Object	Optional	The Billing Address Object.

Dynamic Currency Conversion Details Object

Used for dynamic currency conversion payments. Should be passed in dccDetails of Create Payment request.

	Name	Type	Required	Description
	initiatedOrderId	String	Required	Should be passed for dynamic currency conversion payments. Should be populated with dynamic conversion orderId returned in Payment Order Object

3DS2 Details Object

Used for payments with 3DS2. Should be passed in threedSecureDetails of Create Payment request and Create PreAuth/InitialAuth Transaction requests.

	Name	Type	Required	Description
	initiatedOrderId	String	Required	Should be passed for payments with 3DS2. Should be populated with 3DS2 orderId returned in Payment Order Object
	liabilityShiftIndicator	String	Optional	Optional field in Authorisation and Preauthorisation requests that is matched against the Liability Shift Indicator which SecurePay has stored from 3DS2 Authentication Response. If you do not include an LSI value in the authorisation or preauthorisation request and the liability has not shifted (i.e., you are liable), the transaction will be declined.

Please note the LiabilityShiftIndicator field will be released in July 2023. You can update your integration in the meantime to send the field and the transaction will be processed as normal

Liability Shift Indicator

The purpose of this optional field in the authorisation/preauthorisation request is to:

(1) Provide control (and explicit acceptance) of whether to proceed with payments even if the 3DS2
authentication did not pass.

(2) Ensure that there has been no modification to the Liability Shift Indicator you receive in the
authentication outcome, and your decision to continue with payment (or cease the payment flow) is based
on correct authentication information.

Example #1: Your customer completes the 3DS2 authentication process and the Liability was not shifted,
which means you are liable for fraudulent chargebacks. Based on your business reasoning you want to
proceed with the payment, you must place a ‘N’ in the liabilityShiftIndicator field in the authorisation request
to acknowledge and accept the liability has not been shifted to allow the payment to proceed.

Example #2: Your customer completes the 3DS2 authentication process and the Liability was not shifted.
However, a malicious customer modifies the authentication outcome, and you receive an indicator that the
liability was shifted to the issuer. You proceed with the payment as you understood it was shifted (but you
are still liable for fraudulent chargebacks). As you have sent no value in the liabilityShiftIndicator field, the
payment is rejected, protecting you and your customer.
The LSI value in the authorisation request must match the Liability Shift Indicator value we have stored for
the Authentication outcome. This gives control of proceeding or not proceeding with unauthenticated
transactions.
To see more details on how the field is sent, please refer to the integration guide for your integration in the
developer resources on the SecurePay website.
Please refer to the table below for the transaction flow scenarios relating to the liabilityShiftIndicator field:

	SecurePay: Liability shift indicator from Authentication Outcome	Merchant: Liability Shift Indicator Sent in Authorisation Request ‘liabilityShiftIndicator’	Result
	Y	Y	Payment continues for processing
	N	N	Payment continues for processing
	Y	Not Provided	Payment continues for processing
	N	Y	3DS2 Payment is declined withResponse Code: 517 Response Text:Liability Shift Indicator
	Y	N	3DS2 Payment is declined withResponse Code: 517 Response Text:Liability Shift Indicator
	N	Not Provided	3DS2 Payment is declined withResponse Code: 517 Response Text:Liability Shift Indicator

PreAuth/Account Verification Fraud Check Details Object

If the fraud check has been performed via FraudGuard or ACI Red Shield Fraud detection endpoints, the provider reference number of the fraud check result could be passed as a part of payment request.

	Name	Type	Required	Description
	providerReferenceNumber	String	Conditional	The provider reference number returned by FraudGuard or ACI Red Shield Fraud Detection Endpoints can be found in FraudGuard or ACI Red Shield Check Result Objects.

Payment Object

A completed payment returned by Create Payment and Create Payment(Stored payment instrument)

	Name	Type	Description
	createdAt	String	A timestamp when transaction was created, in ISO Date Time format with offset from UTC/Greenwich e.g. 2021-07-23T13:00:53.128+10:00.
	merchantCode	String	Merchant account for which the funds are collected.
	customerCode	String	The identifier for the customer. In case of anonymous payment it is always anonymous.
	token	String	The tokenised payment instrument that was used.
	ip	String	Client IP address.
	amount	String	Total amount in cents that was charged to the tokenised payment instrument.
	currency	String	Payment currency.
	status	String	The status of the payment. Valid values are paid failed unknown. If the payment was processed and succeeded the status field in payload response is set to paid. If payment was processed but was declined the status is set to failed and errorCode field is populated with error code related to reason of decline. If payment was processed with unexpected status from gateway the status is set to unknown and errorCode field is populated with error code related to reason.
	orderId	String	A client order id, will be used as reference to the payment. Note: < > " characters are not allowed in orderId.
	bankTransactionId	String	The payment transaction reference from the payment gateway.
	gatewayResponseCode	String	Bank response code which identifies the reason the transaction was approved or decline. Refer to bank response code for card payments.
	gatewayResponseMessage	String	Detailed message of the bank response code.
	errorCode	String	If transaction was processed but declined by the bank or payment was declined due to results of requested FraudGuard check this field is populated with error code representing reason of failure.
	fraudCheckType	String	If payment request included FraudGuard check this field is populated with FRAUD_GUARD value.
	fraudCheckResult	Object	If payment request included FraudGuard check this field is populated fraud check result. Refer to Fraud Check Result for more details.

Account Verification Transaction Object

A completed Account Verification transaction returned by Create Account Verification Transaction

	Name	Type	Description
	createdAt	String	A timestamp when transaction was created, in ISO Date Time format with offset from UTC/Greenwich e.g. 2021-07-23T13:00:53.128+10:00.
	merchantCode	String	Merchant account for which the Account Verification transaction is processed against.
	customerCode	String	The identifier for the customer. In case of anonymous payment it is always anonymous.
	token	String	The tokenised payment instrument that was used.
	ip	String	Client IP address.
	orderId	String	A client order id, will be used as reference to the Account Verification. Note: < > " characters are not allowed in orderId.
	status	String	The status of the payment. Valid values are success or failed.
 If the verification was processed and succeeded, the status field in payload resonse is set to success. If the verification was processed but was failed, the status is set to failed and errorCode field is populated with error code related to reason of failure.
	gatewayResponseCode	String	Bank response code which identifies the reason the transaction was approved or decline. Refer to bank response code for card payments.
	gatewayResponseMessage	String	Detailed message of the bank response code.
	errorCode	String	If transaction was processed but declined by the bank this field is populated with error code representing reason of failure.

PreAuth Payment Object

A completed payment returned by Create PreAuth/InitialAuth Transaction

	Name	Type	Description
	createdAt	String	A timestamp when transaction was created, in ISO Date Time format with offset from UTC/Greenwich e.g. 2021-07-23T13:00:53.128+10:00.
	merchantCode	String	Merchant account for which the funds are collected.
	customerCode	String	The identifier for the customer. In case of anonymous payment it is always anonymous.
	token	String	The tokenised payment instrument that was used.
	ip	String	Client IP address.
	amount	String	Total amount in cents that was charged to the tokenised payment instrument.
	status	String	The status of the pre-auth/initial-auth transaction. Valid values are paid failed unknown. If the pre-auth/ initial-auth transaction was processed and successful the status field in payload response is set to paid. If the pre-auth/initial-auth transaction was processed but was declined, the status is set to failed and errorCode field is populated with error code related to reason of decline. If the pre-auth/initial-auth transaction was processed with unexpected status from gateway, the status is set to unknown and errorCode field is populated with error code related to reason.
	orderId	String	A client order id, will be used as reference to the payment. Note: < > " characters are not allowed in orderId.
	bankTransactionId	String	The payment transaction reference from the payment gateway.
	gatewayResponseCode	String	Bank response code which identifies the reason the transaction was approved or decline. Refer to bank response code for card payments.
	gatewayResponseMessage	String	Detailed message of the bank response code.
	errorCode	String	If transaction was processed but declined by the bank this field is populated with error code representing reason of failure.

Cancel InitialAuth Payment Object

A initial-authorisation that was cancelled by Cancel InitialAuth Transaction.

	Name	Type	Description
	merchantCode	String	Merchant account for which the funds are collected.
	ip	String	Client IP address that was used.
	amount	String	Total amount in cents that was cancelled.
	orderId	String	A client order id, will be used as reference to the payment. Note: < > " characters are not allowed in orderId.
	gatewayResponseCode	String	Bank response code which identifies the reason the transaction was approved or decline. Refer to bank response code for card payments.
	gatewayResponseMessage	String	Detailed message of the bank response code.

Capture Payment Object

A completed pre-authorisation capture returned by Capture PreAuth/InitialAuth Transaction.

	Name	Type	Description
	createdAt	String	A timestamp when transaction was created, in ISO Date Time format with offset from UTC/Greenwich e.g. 2021-07-23T13:00:53.128+10:00.
	merchantCode	String	Merchant account for which the funds are collected.
	ip	String	Client IP address that was used.
	amount	String	Total amount in cents that was charged to the tokenised payment instrument.
	status	String	The status of the pre-auth/initial-auth capture payment. Valid values are paid failed unknown. If the pre-auth/initial-auth capture payment was processed and successful the status field in the payload response is set to paid. If the pre-auth/initial-auth capture payment was processed but was declined the status is set to failed and errorCode field is populated with error code related to reason of decline. If the pre-auth/initial-auth capture payment was processed with an unexpected status from gateway, the status is set to unknown and errorCode field is populated with error code related to reason.
	orderId	String	A client order id, will be used as reference to the payment. Note: < > " characters are not allowed in orderId.
	bankTransactionId	String	The payment transaction reference from the payment gateway.
	gatewayResponseCode	String	Bank response code which identifies the reason the transaction was approved or decline. Refer to bank response code for card payments.
	gatewayResponseMessage	String	Detailed message of the bank response code.
	errorCode	String	If transaction was processed but declined by the bank this field is populated with error code representing reason of failure.

Increase PreAuth Payment Object

A completed payment returned by Increase InitialAuth Transaction

	Name	Type	Description
	createdAt	String	A timestamp when transaction was created, in ISO Date Time format with offset from UTC/Greenwich e.g. 2021-07-23T13:00:53.128+10:00.
	amount	String	Total amount in cents that was increased to the tokenised payment instrument.
	status	String	The status of the transaction. Valid values are paid failed unknown . If the increase initial-auth transaction was processed and successful the status field in the payload response is set to paid. If the increase initial-auth transaction was processed but was declined the status is set to failed and errorCode field is populated with error code related to reason of decline. If the increase initial-auth transaction was processed with an unexpected status from gateway, the status is set to unknown and errorCode field is populated with error code related to reason.
	bankTransactionId	String	The payment transaction reference from the payment gateway.
	gatewayResponseCode	String	Bank response code which identifies the reason the transaction was approved or decline. Refer to bank response code for card payments.
	gatewayResponseMessage	String	Detailed message of the bank response code.
	merchantCode	String	Merchant account for which the funds are collected.
	ip	String	Client IP address.
	orderId	String	A client order id, will be used as reference to the payment. Note: < > " characters are not allowed in orderId.
	errorCode	String	If transaction was processed but declined by the bank this field is populated with error code representing reason of failure.

Payment Order Object

A completed payment returned by Initiate Payment Order

	Name	Type	Description
	createdAt	String	A timestamp when order was created, in ISO Date Time format with offset from UTC/Greenwich e.g. 2021-07-23T13:00:53.128+10:00.
	merchantCode	String	Merchant account for which the funds are collected.
	ip	String	Client IP address.
	amount	String	Total amount in cents for this order.
	orderType	String	Payment order type.
	orderId	String	A payment order id. For orders created with intent of dynamic currency conversion payments or 3DS2 payments, the value of this field should be passed in Create Payment request in dynamic currency conversion details object or 3DS2 Details Object respectively. Note: < > " characters are not allowed in orderId.
	orderToken	String	JWT token associated with created order. For orders created with intent of dynamic currency conversion payments, this values should be passed by UI component to retrieve exchange rate details. For orders with intent of 3DS2 payments, this value should be passed to initialise the 3DS2 JS SDK library in order to authenticate the request.
	threedSecureDetails	Object	Field present only if orderType is THREED_SECURE. The 3DS2 Order Details Object.

3DS2 Order Details Object

A response section for 3DS2 Order details in Payment Order Object

	Name	Type	Description
	providerClientId	String	The client Id assigned to the merchant by the 3DS2 provider.
	sessionId	String	A unique session id for an order.
	simpleToken	String	A shortened authentication token. The token is used to authenticate calls from browser.

Payment Instrument Object

A customer payment instrument object created by Create Payment Instrument, but also
returned by List Payment Instruments, Retrieve Payment Instrument,
List Payments for a customer.

	Name	Type	Description
	createdAt	String	A timestamp when payment instrument was created, in ISO Date Time format with offset from UTC/Greenwich e.g. 2021-07-23T13:00:53.128+10:00.
	customerCode	String	A unique (within your organisation) identifier of your customer.
	token	String	A tokenised payment instrument reference. This value is used by the payment gateway to retrieve the actual card information, which is then used to perform transactions. Note: The token is same as the one passed in the request header.
	brandType	String	Brand of payment instrument. E.g. credit, debit, charge card etc. Refer to Bin base lookup for more details.
	brandCategory	String	Category of payment instrument. E.g. standard, premium, business etc. Refer to Bin base lookup for more details.
	scheme	String	A card scheme. e.g. visa, mastercard, diners, amex.. If the card scheme card type is not known to SecurePay API unknown value will be returned.
	bin	String	Bank identification number. i.e. The first 6 digit numbers of the card. Note: Currently not supported. The field was added for future use.
	last4	String	The last 3 digits of the card number. (Please note the number of digits returned may vary due to the card scheme)
	expiryMonth	String	Two digit number representing the card expiry month.
	expiryYear	String	Two digit number representing the card expiry year.

Refund Object

A completed refund returned by Refund Payment.

	Name	Type	Description
	createdAt	String	A timestamp when refund was created, in ISO Date Time format with offset from UTC/Greenwich e.g. 2021-07-23T13:00:53.128+10:00.
	merchantCode	String	Merchant account for which the funds are collected.
	customerCode	String	The identifier for the customer. In case of anonymous payment it is always anonymous.
	amount	String	Total amount in cents that was refunded to the tokenised payment instrument. The amount value cannot be greater than previously processed order amount.
	status	String	The status of the payment. Valid values are paid failed unknown. If the refund was processed and succeeded the status field in payload response is set to paid. If refund was processed but was declined the status is set to failed and errorCode field is populated with error code related to reason of decline. If refund was processed with unexpected status from gateway the status is set to unknown and errorCode field is populated with error code related to reason.
	orderId	String	A client order id which is refunded, will be used as reference number. Note: < > " characters are not allowed in orderId.
	bankTransactionId	String	The payment transaction reference from the payment gateway.
	gatewayResponseCode	String	Bank response code which identifies the reason the transaction was approved or decline. Refer to bank response code for card payments.
	gatewayResponseMessage	String	Detailed message of the bank response code.
	errorCode	String	If transaction was processed but declined by the bank this field is populated with error code representing reason of failure.

Error Codes

For card payments, testing different response codes is configured by payment gateway. Most of the card payment made with cent values (e.g. $1.50 - 150 cents) in Test environment will trigger negative scenario which will result in payment failure. The example cent amount mentioned in `Test Data` is subset of data to test negative scenarios.

Full dollar amount (e.g. `1000`) and cent values of `1008` and `1511` can be used to test successful payments.

Example of declined payment error response:

HTTP/1.1 201 Created

{
 "createdAt": "2021-07-23T13:00:53.128+10:00",
 "amount": 10051,
 "currency": "AUD",
 "status": "failed",
 "bankTransactionId": "824565",
 "gatewayResponseCode": "51",
 "gatewayResponseMessage": "Not sufficient funds",
 "errorCode": "INSUFFICIENT_FUNDS",
 "customerCode": "anonymous",
 "merchantCode": "YOUR_MERCHANT_CODE",
 "ip": "127.0.0.1",
 "token": "1117760467699043",
 "orderId": "6f3e0642-187d-46b3-9f9f-1af3d8e344a0"
}

Example of INVALID_ORDER_ID error response:

HTTP/1.1 400 Bad Request

{
 "errors": [
 {
 "id": "3d5fb6a1-6ca3-4499-b8bc-3898d20945a9",
 "code": "INVALID_ORDER_ID",
 "detail": "Invalid request data"
 }
]
}

Example of INVALID_ORDER_ID_FORMAT error response:

HTTP/1.1 400 Bad Request

{
 "errors": [
 {
 "id": "af026c1e-0730-4313-b26f-fa857d061ebe",
 "code": "INVALID_ORDER_ID_FORMAT",
 "detail": "Invalid OrderId Format",
 "source": {
 "pointer": "orderId"
 }
 }
]
}

Example of authorization error response:

HTTP/1.1 401 Unauthorized

{
 "message": "Unauthorized"
}

Example of internal error response:

HTTP/1.1 500 Internal Server Error

{
 "errors": [
 {
 "id": "3d5fb6a1-6ca3-4499-b8bc-3898d20945a9",
 "code": "GATEWAY_ERROR",
 "detail": "Internal error"
 }
]
}

Example of gateway timed out error response:

HTTP/1.1 504 Gateway Time-out

{
 "errors": [
 {
 "id": "b5807f7e-4adc-11ee-be56-0242ac120002",
 "code": "TIMED_OUT",
 "detail": "The request timed out"
 }
]
}

 Payment Error Codes

Payments endpoints uses the following error codes:

	Response Code	Error Code	Originating System	Testable	Test Data
	201	PAYMENT_DECLINED -- Payment declined	Payment Gateway	Yes	1005 or 1031 cents in amount field
*Certain scenarios are not testable such as non-retriable declines
	201	INSUFFICIENT_FUNDS -- Insufficient funds on payment instrument	Payment Gateway	Yes	1051 cents in amount field
	201	EXPIRED_CARD -- Payment Instrument is expired	Payment Gateway	Yes	1033 cents in amount field
	201	WITHDRAWAL_LIMIT -- Exceeds withdrawal amount limit	Payment Gateway	Yes	1061 cents in amount field
	201	UNSUPPORTED_CARD_TYPE -- Payment Instrument type not supported	Payment Gateway	No	
	201	INVALID_CVV -- Invalid CVV number	Payment Gateway	No	
	201	LOST_OR_STOLEN_CARD -- Lost or stolen card	Payment Gateway	Yes	1007 cents in amount field
	201	ACCOUNT_LOCKED -- Account is locked	Payment Gateway	No	
	201	WITHDRAWAL_LIMIT -- Reached withdrawal limit	Payment Gateway	Yes	1061 cents in amount field
	201	GATEWAY_ERROR -- The payment gateway was not able to process the request due to an unexpected error	Payment Gateway	Yes	1009 cents in amount field
	400	BAD_REQUEST -- Bad request data	SecurePay API	Yes	
	400	INVALID_ACCOUNT -- Account has not been configured for card payments or requested payment feature	SecurePay API	Yes	
	400	INVALID_ORDER_ID -- Order id has to be unique per merchant	SecurePay API	Yes	send payment with an order id that was used by a previous payment
	400	INVALID_ORDER_ID_FORMAT -- OrderId contains characters which are not allowed	SecurePay API	Yes	send an order id which contains any of these < > “ characters
	400	TOKEN_NOT_FOUND -- Token does not exist	SecurePay API	Yes	send payment using a token which does not exist or does not belong to the customer
	400	INVALID_MERCHANT_CODE -- Merchant Code is not listed in client account	SecurePay API	Yes	send payment with merchant not listed in account
	400	INVALID_IP_ADDRESS -- Invalid IP address	SecurePay API	Yes	send payment with an IP address that does not conform to the IPv4 or IPv6 standard
	400	INVALID_AMOUNT -- Invalid amount for a payment	SecurePay API	Yes	send an amount that does not match the business rules for a specific operation (Eg: Different amount for pre-auth and capture pre-auth)
	400	EXCEEDED_PREAUTH_AMOUNT -- Exceeded preauthorised amount	SecurePay API	Yes	send a partial or full cancel amount that exceeds pre-auth amount
	400	INVALID_DCC_DETAILS -- No matching dcc order could be found for a payment request	SecurePay API	Yes	send payment using using initaitedOrderId that does not exist or was used by a previous payment
	401	UNAUTHORIZED -- Provided invalid credentials. Refer to bearer auth for more information.	SecurePay API	Yes	
	500	GATEWAY_ERROR -- Unexpected error while processing the request	SecurePay API	No	
	500	GATEWAY_ERROR -- Payment error from Payment Gateway	Payment Gateway	Yes	1030 cents in amount field
	504	TIMED_OUT -- Payment Gateway took too long to respond	Payment Gateway	No	

 Payment Instrument Error Codes

Payments instruments endpoints uses the following error codes:

	Response Code	Error Code	Originating System	Testable
	400	BAD_REQUEST -- Bad request data	SecurePay API	Yes
	400	INVALID_ACCOUNT -- Account has not been configured for card payments	SecurePay API	Yes
	400	INVALID_TOKEN -- Token provided in payload is either already stored against some customer or does not exist in the system.	SecurePay API	Yes
	400	INVALID_IP_ADDRESS -- Invalid IP address	SecurePay API	Yes
	401	UNAUTHORIZED -- Provided invalid credentials. Refer to bearer auth for more information.	SecurePay API	Yes
	500	SYSTEM_ERROR -- Error happened in SecurePay API while processing request	SecurePay API	Yes
	500	GATEWAY_ERROR -- Error while deleting payment instrument	Payment Gateway	No
	504	TIMED_OUT -- Payment Gateway took too long to respond	Payment Gateway	No

 Refund Error Codes

Refund endpoints uses the following error codes:

	Response Code	Error Code	Originating System	Testable
	201	REFUND_NOT_ALLOWED -- If refund amount is more than the previous paid order amount	Payment Gateway	Yes
	400	INVALID_ACCOUNT -- Account has not been configured for card payments	SecurePay API	Yes
	400	TRANSACTION_NOT_FOUND -- OrderId passed in refund request does not exist	Payment Gateway	Yes
	400	BAD_REQUEST -- Bad request data	SecurePay API	Yes
	400	INVALID_IP_ADDRESS -- Invalid IP address	SecurePay API	Yes
	401	UNAUTHORIZED -- Provided invalid credentials. Refer to bearer auth for more information.	SecurePay API	Yes
	500	SYSTEM_ERROR -- Error happened in SecurePay API while processing request	SecurePay API	Yes
	500	GATEWAY_ERROR -- Error while doing refund	Payment Gateway	No
	504	TIMED_OUT -- Payment Gateway took too long to respond	Payment Gateway	No

 Tokenise Instrument Error Codes

Tokenise endpoints uses the following error codes:

	Response Code	Error Code	Originating System	Testable
	400	BAD_REQUEST -- Send malformed JSON in request	SecurePay API	Yes
	400	INVALID_ACCOUNT -- Account has not been configured for card payments	SecurePay API	Yes
	400	INVALID_CVV -- Invalid CVV details	Payment Gateway	Yes
	400	INVALID_PIN -- Invalid PIN details	Payment Gateway	Yes
	400	INVALID_IP_ADDRESS -- Invalid IP address	SecurePay API	Yes
	400	DCC_QUOTE_IN_PROGRESS -- Could happen in dcc mode only. When tokenise call is made prior onDCCQuoteSuccess was invoked	SecurePay API	Yes
	400	INVALID_FORM_DETAILS -- Could happen in dcc mode only. When tokenise call is made prior user entered all required fields or selected the Currency option.	SecurePay API	Yes
	400	INVALID_ORDER_TOKEN -- Could happen in dcc mode only. When tokenise call is made after onDCCQuoteError callback invoked	SecurePay API	Yes
	500	SYSTEM_ERROR -- Tokenise error from SecurePay API	SecurePay API	Yes
	500	GATEWAY_ERROR -- Tokenisation error from Payment Gateway	Payment Gateway	No
	500	INVALID_CARD_DETAILS -- Invalid card details (could be number, cvv, expiry date, mismatch of cc details)	Payment Gateway	Yes
	500	PRE_AUTH_FAILED -- Pre-auth failed (could be cvv or any other reason, e.g. card blocked)	Payment Gateway	Yes
	500	INVALID_REQUEST_DATA -- Invalid request data (e.g. Invalid IP address)	Payment Gateway	Yes
	500	INVALID_ACCOUNT_DETAILS -- Invalid bank account details (bsb, account number, account name)	Payment Gateway	No
	500	INSUFFICIENT_FUNDS -- Insufficient funds	Payment Gateway	Yes
	500	EXPIRY_DATE -- Invalid expiry date	Payment Gateway	No
	500	UNSUPPORTED_CARD_TYPE -- Payment Instrument type not supported	Payment Gateway	No
	500	RESTRICTED_CARD_OR_ACCOUNT -- Restricted card or account	Payment Gateway	No
	500	LOST_OR_STOLEN_CARD -- Lost or stolen card	Payment Gateway	No
	504	TIMED_OUT -- Payment Gateway took too long to respond	Payment Gateway	No

Testing

You can use the following test card numbers in our sandbox environment.

	Card Type	Card Number
	Visa	4111111111111111
	Visa	4242424242424242
	MasterCard	5555555555554444
	American Express	378282246310005

For dynamic currency conversion payments you can use card numbers starting with the BIN below numbers in our sandbox environment.
A DCC Quote retrieved only after 10 digits are typed in.

	BIN	Currency
	4242424242424242	triggers scenario when card currency is not in the list of supported currencies or AUD, results in payment in AUD currency.
	4314261614350081	USD
	5139006234627198	EUR
	5432500000000006	NZD
	5253030000000000	GBP
	4472010000000000	IDR
	5303990000000005	CRC
	5306950000000006	COP
	4073440000000002	JMD
	4106750000000005	ZAR
	4600050000000001	PHP
	5440140000000001	ARS
	4196070000000009	INR
	4030860000000003	AED
	5486530000000008	CLP
	4147900000000007	TTD
	4406960000000007	UYU
	5579050000000005	MXN
	4791320000000007	GYD
	4006700000000001	HKD
	4518770000000005	GTQ
	5248050000000006	JPY
	5240400000000001	SGD
	5500180000000004	CHF
	5269480000000009	NOK
	4365110000000008	MYR
	5476640000000007	BBD
	4107340000000004	TZS
	4301980000000001	QAR
	5192900000000008	CAD
	4757700000000002	BRL

3DS2 Testing

To test 3DS2 in the Sandbox environment, use Merchant Code of 5AR0055 when creating the 3DS2 payment order. You are not able to use your own Merchant Code and must use the Sandbox Test Merchant Code: 5AR0055. Please contact support at support@securepay.com.au if you need an alternate testing set up.

To use the test cards below you must use:

	Merchant Code: 5AR0055 and associated credentials for authentication, as well as using 5AR0055 when creating a 3DS2 payment order
	Card Holder Name: Test Card or an empty value
	Expiry date (YYMM): value must either be 2508 or an empty value

The Merchant ID, cardholder name, and expiry date must be set as above otherwise the authentication will fail.

Test Cards:

	Authentication Outcome	transStatus	Card Type	Card Number	Challenge password	ECI
	Frictionless	Y	VISA	4100000000000100	N/A	05
	Frictionless	Y	MasterCard	5100000000000107	N/A	02
	Frictionless	Y	AMEX	340000000000108	N/A	05
	Challenge	Y	VISA	4100000000005000	123456	05
	Challenge	Y	MasterCard	5100000000005007	123456	02
	Challenge	Y	AMEX	340000000005008	123456	05
	Challenge failed	N	VISA	4100000000300005	111111	Per card scheme
	Challenge failed	N	MasterCard	5100000000300002	111111	Per card scheme
	Challenge failed	N	AMEX	340000000300003	111111	Per card scheme
	Unavailable	U	VISA	4100000000400003	N/A	Per card scheme
	Unavailable	U	MasterCard	5100000000400000	N/A	Per card scheme
	Unavailable	U	AMEX	340000000400001	N/A	Per card scheme
	Rejected	R	VISA	4100000000500000	N/A	Per card scheme
	Rejected	R	MasterCard	5100000000500007	N/A	Per card scheme
	Rejected	R	AMEX	340000000500008	N/A	Per card scheme
	Attempted	A	VISA	4100000000100009	N/A	06
	Attempted	A	MasterCard	5100000000100006	N/A	01
	Attempted	A	AMEX	340000000100007	N/A	06

Apple Pay Payments
Overview

Apple Pay is a simple and secure way for your customers to pay with their Apple Wallet on SecurePay. It allows your customers to quickly pay you using their credit or debit card that is stored on their Apple device, eliminating the need to enter card details. Each transaction is secured with Face ID, Touch ID or passcode.
Click here to learn more about Apple Pay.

Apple Pay is available on NAB, ANZ and Fiserv (Westpac, Bankwest, St.George, Macquarie, FDMSA) acquiring bank links.

Before implementing Apple Pay, please see the below links:

	Acceptable Use Guidelines for Apple Pay on the web link.
	Non Profit donation guidelines link.

How it works

Customers select Apple Pay when they want to check out. A payment sheet is shown to the customer, and they then authenticate using Face ID, Touch ID or passcode. The payment is then authorised by the card issuer.

On Apple Device

[image:]

Initialise Session

1.1. Customer chooses to pay with Apple Pay by clicking Buy with Apple Pay button, then the browser makes Initiate Session call to your (merchant's) server.

1.2. Your server then sends the Initiate Session request to SecurePay API to initialise the Apple Pay session.

1.3. SecurePay API sends initialise session request to Apple Pay server.

1.4. Initialise session response returned to the customer browser.

Payment Authorisation

2.1. When customer authorises the Payment with Touch ID, Face ID or Passcode, encrypted payment data request is sent to Apple Pay from a device.

2.2. Apple Pay returns encrypted Payment Data.

2.3. Apple Device sends Payment Request with encrypted payment data to your server.

2.4. Your server sends Apple Pay Payment Request to SecurePay API.

2.5. Once the SecurePay API Processes the payment, response is sent back to your server.

Integration with Apple Pay

Integrating Apple Pay on your website is simple. You'll need to follow the instructions on using the Apple Pay JS API.
You'll need to make sure you follow Apple's marketing guidelines found here.

Apple Pay Account setup

Your website must be using HTTPS.
Integration of ApplePay and SecurePay does not require an Apple developer account.
You will, however need the Apple developer account to test your Apple wallet.
For more details please refer to the Testing section

Note: An additional fee may be incurred for the enrolment and the use of an Apple developer account. This is charged directly to you via Apple.

Before you can start integrating with Apple Pay, you will need to register the domains you would like to use for Apple Pay. This can be done by logging in to your SecurePay Account.

Firstly, for your live account, you will need to complete domain verification. Apple requires you to verify that you own the domains you are registering to use with Apple Pay. You will have to host the Domain Verification file at this location https://{domain-name}/.well-known/apple-developer-merchantid-domain-association (where {domain-name} is your domain) and make sure the file is accessible over the internet.

For Sandbox account, you can skip above step and simply register the domains.

For Sandbox

To test your integration, you will need to log in to your SecurePay Account to generate and obtain your Apple Pay specific credentials.

In the test credentials section of SecurePay Account, select Sandbox Credentials - Apple Pay and follow on-screen instructions to configure Apple Pay in sandbox environment. Please note, your Sandbox Credentials - Apple Pay credentials are different to your existing test credentials and are unique to your Merchant Code.

You must register the domains you would like to use for sandbox testing by selecting Configure Apple Pay Sandbox.

Later you will need these registered domains for Initiate Session Request.

For Live

You can activate Apple Pay from the Payment features tab by completing the instant application.

In the application, follow the steps to verify ownership of your domains. You must register the domains you would like to use for your live payments.

Later you will need these registered domains for Initiate Session Request.

Your live credentials are the same as your existing live credentials.

On Safari Browser

This integration guide will help to integrate Apple Pay JS API
with your (merchant's) website.

Pre-requisite

	Apple Pay Account setup, please follow the instructions here.
	Your customer must have an Apple device with a supported iOS/macOS/iPadOS version and use the Safari browser. For more details please visit Apple Pay Availability by Region and Platform.
	In order to use Apple Pay, a user also must first add a credit or debit card to their Apple wallet.

Technical Details
Initiate Session

Apple Pay Button on web

<html>
<head>
 <style type="text/css">
 /* CSS */
 .title {
 color: blue;
 text-decoration: bold;
 text-size: 1em;
 }
 .author {
 color: gray;
 }
 .apple-pay-button {
 display: inline-block;
 -webkit-appearance: -apple-pay-button;
 -apple-pay-button-type: buy; /* Use any supported button type like donate, plain. Refer https://developer.apple.com/documentation/apple_pay_on_the_web/displaying_apple_pay_buttons */
 }
 .apple-pay-button-black {
 -apple-pay-button-style: black;
 }
 .applePayButtonContainer {
 width: auto;
 height: auto;
 padding: 0;
 margin: 0;
 position: absolute;
 top: 50%;
 left: 50%;
 transform: translate(-50%, -50%);
 }
 </style>
 <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
 <script>
 $(document).ready(() => {

 //1.1
 /*Check that the window.ApplePaySession class exists to ensure Apple Pay is supported and available in the browser.
 Then, call supportsVersion with the ApplePaySession that will be used (link in description for more details on supportVersion).
 Finally, call canMakePayments to ensure that the device is capable of making Apple Pay payments */
 //ApplePaySession.canMakePayments() this works only when https is enabled in server, please enable https in local server for development.
 if (ApplePaySession && ApplePaySession.canMakePayments()) {
 $('.unsupportedBrowserMessage').css('display', 'none');
 $('.apple-pay-button').css('display', 'block');
 console.log('Startup Check: Device is capable of making Apple Pay payments');
 }
 });

 function onApplePayButtonClicked() {
 console.log('Clicked Buy with Apple Pay');
 }
 </script>
</head>
<body>
 <div class="unsupportedBrowserMessage" style="display: block;">
 Your browser does not support Apple Pay on the web.

 To try this demo, open this page in Safari.

 (See Requirements.)
 </div>

 <div class="applePayButtonContainer">
 <a lang="us" id="overviewApplePayButton" class="apple-pay-button apple-pay-button-black" onclick="onApplePayButtonClicked()" title="Start Apple Pay"
 role="link" tabindex="0" style="display: none;">
 </div>
</body>
</html>

Sample code for Apple Pay web integration

function onApplePayButtonClicked() {
 //1.1 session.begin() is called at last after initialising required callbacks

 //ref.1.2
 const paymentRequest = generatePaymentRequest();
 const session = new ApplePaySession(APPLE_PAY_VERSION, paymentRequest)
 //ref.1.3
 session.onvalidatemerchant = function (event) {
 //here you will be making a call to SecurePay API Initialise Session
 const promise = requestApplePaySession();
 promise.then(function (session) {
 //ref.1.4
 session.completeMerchantValidation(session.sessionObject);
 }).catch(function (error) {
 //abort() will trigger oncancel handler where you can handle error
 session.abort();
 //here you can handle error
 return;
 });
 }

 //oncancel handler is called when UI is dismissed
 session.oncancel = (event) => {
 console.log("Session canceled called when UI is dismissed" + JSON.stringify(event))
 }

 //ref.2.1/2.2
 session.onpaymentauthorized = function (event) {
 //ref.2.3 here you will be making a call to SecurePay API Payment Request
 mercahntApi.payment({
 //The event parameter contains the ApplePayPayment attribute.
 //Ref. https://developer.apple.com/documentation/apple_pay_on_the_web/applepaypayment
 //Also, map this object with SecurePay Apple Pay Payment Api
 token: event.payment
 }, function (err, paymentResponse) {
 if (err) {
 //ref.2.5
 session.completePayment(session.STATUS_FAILURE);
 return;
 }
 //ref.2.4
 session.completePayment(session.STATUS_SUCCESS);
 //Send payment data details to your server.
 });
 }

 //ref.1.1 This is important call to begin the session initialisation process
 session.begin();

 function generatePaymentRequest() {
 const request = {
 countryCode: "AU",
 currencyCode: "AUD",
 merchantCapabilities: ["supports3DS"],
 supportedNetworks: ["masterCard", "visa"],
 total: {
 amount: 100.00,
 label: "The Cake Store",
 type: "final"
 }
 }
 return request;
 }
 }

1.1. Before displaying Apple Pay as a payment option in your website, determine if the user’s device supports Apple Pay and respective version.
If it does then show Apple Pay Button.

Reference Links for integration of Apple Pay Button

	Apple Pay Button
	Customising and styling the Apple Pay Button
	Apple Pay Supported Version on the web

1.2. When the user taps the Apple Pay button, you need to call a JS function which will create a session object with PaymentRequest.
Here, you can set PaymentRequest to display your business name and the total amount. You can also collect information like billing details or shipping information.
See Apple’s documentation for full guidance on how to customize the payment request of ApplePaySession.

1.3. Then call session.begin() which
will initiate Apple JS API Merchant Validation process.

1.3. Once you do call session.begin(), the browser will invoke session.onvalidatemerchant handler,
which must create a merchant session from your server by calling Initiate Session to SecurePay API.
For security reasons, your server must do this call, not your browser client code.

1.4. After the successful session response comes back, use response.sessionObject on completeMerchantValidation(sessionObject)
to complete session.onvalidatemerchant() handler.

1.5. The browser will then display the payment sheet where your customer needs to authorise the payment.

Initiate Payment after Authorisation

2.1. Next when your customer authorised the payment with Touch ID, Face ID or Passcode, onpaymentauthorized event handler is called on session object.

2.2. Here, you must implement the session.onpaymentauthorized handler,
that will be responsible for processing the payment transaction. Please follow the Apple Pay guidelines on the usage of onpaymentauthorized handler.

2.3. Your server then sends the Apple Pay Payment Request to SecurePay API.
Again for security reasons, your server must do this call, not your browser client code.

2.4. And lastly, after getting a Payment Response, call session.completePayment(..) with appropriate Status Code from ApplePaySession.

2.5. In case of error response, use STATUS_FAILURE with an array of associated ApplePayError objects.

Testing

	Before you start, use merchant’s own credential by logging in to your SecurePay account. Please see these are separate clientId and secret from other Playground test credentials you might have.
	Test Credit Cards are available at Apple Pay - Sandbox Testing - Apple Developer for testing. Also, SecurePay only supports Visa and Mastercard cards as of now.
	The Apple Developer website provides the tools and information you need to make great apps for Apple platforms. If you’re new to development on Apple platforms, you can get started for free. Apple may charge additional fees for the developer account.
The steps to create the developer account are as follow:

	You first have to accept this developer agreement by clicking this link accept the Apple Developer Agreement.
 [image:]

	If you do not already have an Apple ID, click the link to create one.
 [image:]

	You have successfully created an Apple developer account!
 [image:]

	Please refer to Account - Help - Apple Developer for the complete guide to create an Apple developer account
	Once developer account is created then apple developer account can be used to login to app store and connect to create your test account for ApplePay wallet - Sandbox Testing - Apple Pay.

Rest API

Please note that for all requests timeout is 30 seconds.

The URLs mentioned throughout the Rest API documentation and in the code samples are for the sandbox environment.

To ensure you're using the correct URL please refer to Environment details.

Initiate Session

Initiate Session API:

POST https://payments-stest.npe.auspost.zone/v2/wallets/applepay/sessions/initiate

Request:

curl https://payments-stest.npe.auspost.zone/v2/wallets/applepay/sessions/initiate -X POST
 -H "Content-Type: application/json"
 -H "Authorization: Bearer xxxxxxxx"
 {
 "domain": "cakebaking.com",
 "displayName": "Cake Store",
 "merchantCode": "MERCHANT_CODE",
 "ip": "127.0.0.1"
 }

Response:

{
 "merchantCode": "MERCHANT_CODE",
 "ip": "127.0.0.1",
 "sessionObject": {...}
}

SecurePay initiates a session with Apple Pay.

HTTP Request

POST https://payments-stest.npe.auspost.zone/v2/wallets/applepay/sessions/initiate

Header Parameters

	Parameter	Required	Description
	Authorization	Required	Bearer Access Token. Refer to client credentials for more information on obtaining an access token.
	Content-Type	Required	Should be set to application/json.

Request Parameters

	Parameter	Type	Required	Description
	domain	String	Required	The merchant domain registered with Apple Pay and it must be the domain where customer is making a payment . Must not be longer than 255 characters.
	displayName	String	Required	The merchant name that will be displayed to customer while authorising the payment. Must not be longer than 64 characters.
	merchantCode	String	Required	Merchant account for which the funds are collected.
	ip	String	Required	A customer IP address. Must be a valid IPv4 or IPv6.

Response

	Name	Type	Description
	merchantCode	String	Merchant account for which the funds are collected.
	ip	String	A customer IP address. Must be a valid IPv4 or IPv6.
	sessionObject	Object	Contains the object that was returned by Apple Pay. Should be passed by merchant to device as it is.

Apple Pay Payment

Apple Pay Payment API:

POST https://payments-stest.npe.auspost.zone/v2/wallets/applepay/payments

Request:

curl https://payments-stest.npe.auspost.zone/v2/wallets/applepay/payments -X POST
 -H "Content-Type: application/json"
 -H "Authorization: Bearer xxxxxxxx"
 -H "Idempotency-Key: 022361c6-3e59-40df-a58d-532bcc63c3ed"
 {
 "amount": 10000,
 "currrency": "AUD",
 "merchantCode": "YOUR_MERCHANT_CODE",
 "ip": "127.0.0.1",
 "orderId": "0475f32d-fc23-4c02-b19b-9fe4b0a848ac",
 "paymentData": {
 "encryptedData": "Szv0rBU1zE1cwbszivpKrWx...",
 "signature": "MIAGCSqGSIb3DQEHAqCAMIACAQE",
 "version": "EC_v1",
 "ephemeralPublicKey": "MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEEJJak7jaMn7vzU...",
 "publicKeyHash": "7zbHcn1VIPU/+gfdlnglvsvnvfvscsd=",
 "transactionId": "1f2239b7ce042f736c5c9829f115ff2fc87a4b3dd518bfd83cadd6b765c785ac",
 "applicationData": "9f86d081884c7d659a2feaa0c55ad015a3bf4f1b2b0b822cd15d6c15b0f00a08"
 }
 }

Response:

{
 "createdAt": "2021-07-23T13:00:53.128+10:00",
 "amount": "10000",
 "currency": "AUD",
 "status": "paid",
 "bankTransactionId": "de305d54-75b4-431b-adb2-eb6b9e546014",
 "gatewayResponseCode": "00",
 "gatewayResponseMessage": "Transaction successful",
 "merchantCode": "YOUR_MERCHANT_CODE",
 "ip": "127.0.0.1",
 "orderId": "0475f32d-fc23-4c02-b19b-9fe4b0a848ac"
}

SecurePay supports only Visa and Mastercard cards as of now.

HTTP Request

POST https://payments-stest.npe.auspost.zone/v2/wallets/applepay/payments

Header Parameters

	Parameter	Required	Description
	Authorization	Required	Bearer Access Token. Refer to client credentials for more information on obtaining an access token.
	Content-Type	Required	Should be set to application/json.
	Idempotency-Key	Optional	This key allows a client to safely retry the payment request if it fails to receive a response from the server, e.g. due to a network connection error, etc. The server guarantees to process a payment only once if the same key is used across multiple transactions within 12 hours. It is important for the client to generate random keys, hence the use of UUIDs is strongly encouraged but not enforced by the application. If not passed orderId will be used as Idempotency-Key.

Request Parameters

	Parameter	Type	Required	Description
	amount	Integer	Required	An integer value greater than 0, representing the total amount in cents for which the transaction will be initiated. Please note the amount field must be sent in cents i.e. if you are sending $1.00, the amount value should be 100. Do not send float values (1.00 will be treated as 1 cent).
	currency	String	Optional	Payment currency. Default value is AUD. If value is set, then it must be AUD.
	orderId	String	Optional	A client order id, will be used as reference to the payment. Must be unique and no longer than 60 characters.
	merchantCode	String	Required	Merchant account for which the funds are collected.
	ip	String	Required	A customer IP address. Must be a valid IPv4 or IPv6.
	paymentData	Object	Required	Refer to PaymentData object details for more details.

Apple Pay Payment Data Object

Use event.payment.token.paymentData of onpaymentauthorized Apple JS callback event to populate Payment Data object fields.

	Parameter	Type	Required	Description
	encryptedData	String	Required	Encrypted payment data, set as paymentData.data.
	signature	String	Required	Signature of the payment and header data, set as paymentData.signature
	version	String	Required	Version information about the payment token, set as paymentData.version
	ephemeralPublicKey	String	Required	Ephemeral public key bytes, set as paymentData.header.ephemeralPublicKey
	publicKeyHash	String	Required	Hash of the X.509 merchant’s certificate, set as paymentData.header.publicKeyHash.
	transactionId	String	Required	Transaction identifier, generated on the device. Set as paymentData.header.transactionId.
	applicationData	String	Conditional	Set as paymentData.header.applicationData. Check if applicationData is being set, ref.1.2 of Session's Payment Request, if it is then this must be passed in Payment Request Api.

Response

	Name	Type	Description
	createdAt	String	A timestamp when transaction was created, in ISO Date Time format with offset from UTC/Greenwich e.g. 2021-07-23T13:00:53.128+10:00.
	amount	Integer	An integer value greater than 0, representing the total amount in cents.
	currency	String	Payment currency.
	status	String	The status of the payment. Valid values are paid, failed, unknown. Refer to Payment transaction status for details.
	bankTransactionId	String	The reference number to the order, issued by provider.
	gatewayResponseCode	String	Bank response code which identifies the reason the transaction was approved or decline. Refer to bank response code for Apple Pay payments.
	gatewayResponseMessage	String	Detailed message of the bank response code.
	errorCode	String	If transaction was processed but declined by the bank this field is populated with error code representing reason of failure.
	merchantCode	String	Merchant account for which the funds are collected.
	ip	String	Client IP address.
	orderId	String	A client order id, will be used as reference to the payment.

Refund Apple Pay Payment

Used to refund a previous Apple Pay payment. Can only be used for AUD transactions.

To refund Apple Pay payment, use this code:

POST https://payments-stest.npe.auspost.zone/v2/wallets/applepay/orders/{orderId}/refunds

curl https://payments-stest.npe.auspost.zone/v2/wallets/applepay/orders/{orderId}/refunds -X POST
 -H "Content-Type: application/json"
 -H "Authorization: Bearer xxxxxxxx"
 -d '{ "amount": 10000,
 "merchantCode": "YOUR_MERCHANT_CODE",
 "ip": "127.0.0.1"
 }'

{
 "createdAt": "2021-07-23T13:00:53.128+10:00",
 "merchantCode": "YOUR_MERCHANT_CODE",
 "amount": 10000,
 "status": "paid",
 "orderId": "0475f32d-fc23-4c02-b19b-9fe4b0a848ac",
 "bankTransactionId": "de305d54-75b4-431b-adb2-eb6b9e546014",
 "gatewayResponseCode": "00",
 "gatewayResponseMessage": "Approved"
}

 HTTP Request

POST https://payments-stest.npe.auspost.zone/v2/wallets/applepay/orders/{orderId}/refunds

 Header Parameters

	Parameter	Required	Description
	Authorization	Required	Bearer Access Token. Refer to client credentials for more information on obtaining an access token.
	Content-Type	Required	Should be set to application/json.

 Path Variables

	Parameter	Description
	orderId	A customer order id which was successfully processed previously and the merchant now wants to refund it.

 Request Parameters

	Parameter	Type	Required	Description
	merchantCode	String	Required	Merchant account for which the funds are collected.
	ip	String	Required	A customer IP address. Must be a valid IPv4 or IPv6.
	amount	Integer	Required	An integer value greater than 0, representing the total amount in cents to refund. The amount will be refunded to the same payment instrument from which the payment was made for the order. The amount value to be refunded should be less then or equal to the actual paid amount. Please note the amount field must be sent in cents i.e. if you are sending $1.00, the amount value should be 100. Do not send float values (1.00 will be treated as 1 cent).

 Response

	Name	Type	Description
	createdAt	String	A timestamp when refund was created, in ISO Date Time format with offset from UTC/Greenwich e.g. 2021-07-23T13:00:53.128+10:00.
	merchantCode	String	Merchant account for which the funds are collected.
	amount	String	Total amount in cents that was refunded to the payment instrument. The amount value cannot be greater than previously processed order amount.
	status	String	The status of the refund. Valid values are paid failed unknown. If the refund was processed and succeeded the status field in payload response is set to paid. If refund was processed but was declined the status is set to failed and errorCode field is populated with error code related to reason of decline. If refund was processed with unexpected status from gateway the status is set to unknown and errorCode field is populated with error code related to reason.
	orderId	String	A client order id which is refunded, will be used as reference number.
	bankTransactionId	String	The refund transaction reference from the payment gateway.
	gatewayResponseCode	String	Bank response code which identifies the reason the transaction was approved or decline. Refer to bank response code for card payments.
	gatewayResponseMessage	String	Detailed message of the bank response code.
	errorCode	String	If transaction was processed but declined by the bank this field is populated with error code representing reason of failure.

Payment Transaction Status

	Status	Description
	paid	The payment has been successful.
	failed	The payment has been failed.
	unknown	The result of execution is not determined(e.g. due to connectivity issues).

Error Codes

SecurePay Apple Pay endpoints uses the following error codes:

	Response Code	Error Code	Originating System	Testable
	400	BAD_REQUEST -- Bad request data	SecurePay API	Yes
	400	INVALID_REQUEST_DATA -- Invalid request data	SecurePay API	Yes
	400	INVALID_REQUEST_DATA -- Unable to decrypt Payment Data	SecurePay API	Yes
	400	INVALID_REQUEST_DATA -- Amount and Currency mismatch	SecurePay API	Yes
	400	INVALID_APPLE_PAY_DETAILS -- DomainName is not registered with Apple Pay	SecurePay API	Yes
	400	INVALID_ORDER_ID -- Order id has to be unique per merchant and must be no longer than 49 characters	SecurePay API	Yes
	400	INVALID_ACCOUNT -- Account has not been configured for Apple Pay payments	SecurePay API	Yes
	500	GATEWAY_ERROR -- Refund failure from Payment provider	Provider	No
	401	UNAUTHORIZED -- Provided invalid Http access token. Refer to client credentials for more information.	SecurePay API	Yes
	500	SYSTEM_ERROR -- Error happened in SecurePay API while processing request	SecurePay API	Yes
	400	INVALID_IP_ADDRESS -- Invalid IP address	SecurePay API	Yes
	400	TRANSACTION_NOT_FOUND -- Order doesn't exist or not paid	SecurePay API	Yes

Direct Entry Payments
Overview

Direct Entry payments includes both direct debit and direct credit functionality.

These transactions use the BSB and account number to charge a customer’s bank account (direct debit) or to send funds to a customer's bank account (direct credit).
To be eligible to use direct debit, you must have an active direct debit or direct credit account with SecurePay.

Direct entry payments are not processed in real time; they are stored in SecurePay’s database and processed daily.
Direct entry transactions can be viewed in the merchant portal.

Please note: SecurePay API Direct Entry endpoints can only be used for customer initiated payments. Direct Entry schedule payments can be created & managed in the merchant portal.
Rest API

Please note that for all requests timeout is 30 seconds.

The URLs mentioned throughout the Rest API documentation and in the code samples are for the sandbox environment.

To ensure you're using the correct URL please refer to Environment details.

Create Direct Entry Payment

Used to make direct debit and credit payments.

To do direct entry payment, use this code:

POST https://payments-stest.npe.auspost.zone/v2/direct-entry

curl https://payments-stest.npe.auspost.zone/v2/direct-entry -X POST
 -H "Content-Type: application/json"
 -H "Authorisation: Bearer xxxxxxxx"
 -d '{
 "ip": "127.0.0.1",
 "merchantCode": "YOUR_MERCHANT_CODE",
 "orderId": "9fe4b0a848ac",
 "amount": 10000,
 "paymentMethod": "DirectCredit",
 "bsb": "013457",
 "accountNumber": "123456789",
 "accountName": "Jane Doe",
 }'

{
 "orderId": "9fe4b0a848ac",
 "transactionId": "848403",
 "settlementDate": "2020-08-03",
 "amount": 10000,
 "merchantCode": "YOUR_MERCHANT_CODE",
 "paymentMethod": "DirectCredit",
 "bsb": "013457",
 "accountNumber": "123456789",
 "accountName": "Jane Doe",
 "ip": "127.0.0.1"
}

HTTP Request

POST https://payments-stest.npe.auspost.zone/v2/direct-entry

Header Parameters

	Parameter	Required	Description
	Authorization	Required	Bearer Access Token. Refer to client credentials for more information on obtaining an access token.
	Content-Type	Required	Should be set to application/json.

Request Parameters

	Parameter	Type	Required	Description
	ip	String	Required	A customer IP address. Must be a valid IPv4.
	merchantCode	String	Required	Merchant account code for which payment is performed.
	orderId	String	Required	A client order id, will be used as reference to the payment. Should not be longer than 18 characters. Supported characters are alphanumeric, ' '(blank space) and special characters: / - & . * ' .
	amount	Integer	Required	An integer value greater than 0, representing the total amount in cents to charge the account. Please note the amount field must be sent in cents i.e. if you are sending $1.00, the amount value should be 100. Do not send float values (1.00 will be treated as 1 cent).
	bsb	String	Required	6-digit Australian bank-state-branch (BSB) number.
	accountNumber	String	Required	The account number for the bank account. Should not be longer than 9 characters.
	accountName	String	Required	The name of the person or business that owns the bank account. Should not be longer than 32 characters.
	paymentMethod	String	Required	The type of payment. Supported values are DirectDebit and DirectCredit.

Response

	Name	Type	Description
	ip	String	Client IP address.
	merchantCode	String	Merchant account for which the funds are collected.
	orderId	String	A client order id, will be used as reference to the payment.
	transactionId	String	The payment transaction reference from the payment gateway.
	amount	String	Total amount in cents that was charged to the account.
	settlementDate	String	The settlement date of a successful payment.
	paymentMethod	String	The type of payment performed. Values are DirectDebit and DirectCredit
	bsb	String	6-digit Australian bank-state-branch (BSB) number.
	accountNumber	String	The account number for the bank account.
	accountName	String	The name of the person or business that owns the bank account.

Error Codes

Direct Entry endpoint uses the following error codes:

	Response Code	Error Code	Originating System	Testable
	400	INVALID_IP_ADDRESS -- Invalid IP address	SecurePay API	Yes
	400	DDA_NOT_FOUND -- The DDA was not found	Payment Gateway	No
	400	BELOW_DDA_MIN_AMOUNT -- Amount is lower than the DDA min limit	Payment Gateway	No
	400	EXCEEDED_DDA_MAX_AMOUNT -- Amount is higher than the DDA max limit	Payment Gateway	No
	400	EXPIRED_DDA -- The DDA has expired	Payment Gateway	No
	400	INVALID_ACCOUNT -- Account has not been configured for direct entry payments	Payment Gateway	No
	401	UNAUTHORIZED -- Provided invalid credentials. Refer to bearer auth for more information.	SecurePay API	Yes
	500	SYSTEM_ERROR -- Error happened in SecurePay API while processing request	SecurePay API	No
	500	GATEWAY_ERROR -- Error while processing the request	Payment Gateway	No
	504	TIMED_OUT -- Payment Gateway took too long to respond	Payment Gateway	No

PayPal Payments
How it works

Please note, this service is in alpha and not publicly available.

To include the PayPal button please refer to the PayPal Checkout Button Integration example.

[image:]

1.1. When the user clicks on the PayPal button, it triggers the payment() callback function from the PayPal Button. In that method, you make a call to your server to make an Initiate PayPal Txn.

1.2. Your server then proxies the request to perform the Initiate PayPal Txn to SecurePay API.

2.1. Your server receives the Initiate PayPal Txn Response from SecurePay API which contains the paymentId.

2.2. Your app/web then receives the response in the payment() callback function, which then return the paymentId.

3.1. PayPal script loads the PayPal LightBox, where the user login and authorize the payment.

4.1. Once the user authorize the payment, the onAuthorize() callback function is called. You now have access to the payerId which is required for the next step.

5.1. In the onAuthorize() function, you make a call to your server to make an Execute PayPal Txn to perform the payment.

5.2. Your server then proxies the request to perform the Execute PayPal Txn.

6.1. Your server receives the Execute PayPal Txn Response from SecurePay API.

6.2. Your app/web then receives the response in the onAuthorize().

7.1 PayPal will render the success/failure page based on the following callbacks onAuthorize,onCancel and onError.

Sample code

Sample code for PayPal button web integration:

paypal.Button.render({
 env: 'sandbox',
 locale: 'en_AU',
 style: { size: 'responsive', color: 'silver', shape: 'pill', label: 'pay' },
 commit: true,
 payment: function() { // initiate payment
 return getPaymentId().then(function(paymentId) {
 console.log('SecurePay API responded with paymentId:', paymentId);
 return paymentId;
 })
 },
 onAuthorize: function(data, actions) { // execute payment
 console.log('Sending authorization request to SecurePay API with payerID:', data.payerID);
 return authorizePayment(data.payerID).then(function(response) {
 console.log('SecurePay API responded with data:', response);
 })
 }
}, '#paypal-button'); // element where paypal button will be injected

var amount = 5075;
var merchantCode = 'XXXXXXXXXXX';
var orderId = Date.now();
var ip = '127.0.0.1';

function getPaymentId() {
 return new Promise(function (resolve, reject) {
 var xhttp = new XMLHttpRequest();
 //Important this call is to the merchant server not SecurePay API
 xhttp.open('POST', '/your-backend-api/paypal/initiate', true); // API proxies request through to SecurePay API: /v1/wallets/paypal/payments/initiate
 xhttp.setRequestHeader('content-type', 'application/json');
 xhttp.onload = function () {
 if (this.status == 200) {
 resolve(JSON.parse(xhttp.response).paymentId);
 }
 };
 xhttp.send(JSON.stringify({
 amount: amount,
 merchantCode: merchantCode,
 ip: ip,
 orderId: orderId
 }));
 });
}

function authorizePayment(payerId) {
 return new Promise(function (resolve, reject) {
 var xhttp = new XMLHttpRequest();
 //Important this call is to the client server not SecurePay API
 xhttp.open('POST', '/your-backend-api/paypal/execute', true); // API proxies request through to SecurePay API: '/v1/wallets/paypal/payments/orders/orderId/execute'
 xhttp.setRequestHeader('content-type', 'application/json');
 xhttp.onload = function () {
 if (this.status == 200) {
 resolve(JSON.parse(xhttp.response));
 }
 };
 xhttp.send(JSON.stringify({
 amount: amount,
 merchantCode: merchantCode,
 ip: ip,
 orderId: orderId,
 payerId: payerId
 }));
 });
}

This method adds a Paypal button to the client website, which when clicked, opens a PayPal lightbox overlaying the current webpage. It utilises PayPal's standard express checkout flow and code.

To implement this method, the client should:

1 - add the following PayPal script to their page:

<script src="https://www.paypalobjects.com/api/checkout.js"></script>

2 - add a div where the paypal button will be inserted:

<div id="paypal-button"></div>

3 - add the PayPal paypal.Button.render code snippet (as shown opposite).

The PayPal code snippet inserts the PayPal button into the DOM within the element specified. When the user clicks on this button, it triggers the payment() callback function to be called.
This function expects a PayPal paymentId to be returned via a promise.

The paymentID is obtained via a call to SecurePay API's Initiate PayPal Transaction service API.
The code example opposite: getPaymentId() provides an example of how this API call could be implemented using a Promise.

When the promise is resolved, and paymentId returned, the PayPal script loads the lightbox, where the user can login
and authorise the payment.

Once the user is done, the onAuthorize() callback function is called automatically.
Within this function a call should be made to SecurePay API's Execute PayPal Transaction
service API to execute the payment.

The code example opposite: authorizePayment() provides an example of how this API call could be implemented
using a Promise.

Note: the payerID is obtained from the input parameter to onAuthorize() and sent in the POST request to the SecurePay API.

Rest API

Please note that for all requests timeout is 30 seconds.

The URLs mentioned throughout the Rest API documentation and in the code samples are for the sandbox environment.

To ensure you're using the correct URL please refer to Environment details.

Initiate PayPal Transaction

To initiate PayPal transaction:

POST https://payments-stest.npe.auspost.zone/v2/wallets/paypal/payments/initiate

curl https://payments-stest.npe.auspost.zone/v2/wallets/paypal/payments/initiate -X POST
 -H "Content-Type: application/json"
 -H "Authorization: Bearer xxxxxxxx"
 -d '{ "amount": 10000,
 "merchantCode": "YOUR_MERCHANT_CODE",
 "ip": "127.0.0.1",
 "orderId": "0475f32d-fc23-4c02-b19b-9fe4b0a848ac",
 "paymentType": "sale",
 "noShipping": true,
 "billingDescription": "text displayed to buyer",
 "redirectUrls": {
 "successUrl": "http://<success url>",
 "cancelUrl": "http://<cancel url>"
 },
 }'

{
 "createdAt": "2021-07-23T13:00:53.128+10:00",
 "merchantCode": "YOUR_MERCHANT_CODE",
 "customerCode": "anonymous",
 "ip": "127.0.0.1",
 "amount": "10000",
 "paymentUrl": "https://www.sandbox.paypal.com/cgi-bin/webscr?cmd=_express-checkout&token=EC-2B968028MX02434E",
 "paymentId": "EC-2B968028MX02434E",
 "orderId": "0475f32d-fc23-4c02-b19b-9fe4b0a848ac",
 "paymentType": "sale",
 "noShipping": true
}

Initiates a PayPal express checkout transaction.

HTTP Request

POST https://payments-stest.npe.auspost.zone/v2/wallets/paypal/payments/initiate

 Header Parameters

	Parameter	Required	Description
	Authorization	Required	Bearer Access Token. Refer to client credentials for more information on obtaining an access token.
	Content-Type	Required	Should be set to application/json.

Request Parameters

	Parameter	Required	Description
	merchantCode	Required	Merchant account for which the funds are collected.
	ip	Required	A customer IP address. Must be a valid IPv4 or IPv6.
	amount	Required	An integer value greater than 0, representing the total amount in cents for which the transaction will be initiated. Please note the amount field must be sent in cents i.e. if you are sending $1.00, the amount value should be 100. Do not send float values (1.00 will be treated as 1 cent).
	orderId	Optional	A client order id, will be used as reference to the payment.
	paymentType	Optional	This parameter defines what kind of PayPal transaction you are initiating. Supported type is sale. sale is used for a once-off payment. Default is set to sale.
	noShipping	Optional	Defines if shipping address will be made visible when customer logs into PayPal account to authorise the transaction. Set it to true if you don't want to make shipping address visible to customer - in case of digital goods. Default value is false.
	billingDescription	Optional	The text will appear on customer's PayPal account, as they will login to there PayPal account to authorise the transaction. Note: This feature is currently supported only for paymentType recurring only.
	redirectUrls	Required	Refer to Redirect URLs for more details.

Redirect URLs

	Parameter	Required	Description
	successUrl	Required	The URL to which the client will be redirected to after successful PayPal authorisation.
	cancelUrl	Required	The URL to which the client will be redirected to in case of failure or cancellation of PayPal authorisation.

Response

	Name	Description
	createdAt	A timestamp when plan was created, in ISO Date Time format with offset from UTC/Greenwich e.g. 2021-07-23T13:00:53.128+10:00.
	merchantCode	Merchant account for which the funds are collected.
	customerCode	The identifier for the customer. In case of anonymous payment it is always anonymous.
	ip	Client IP address.
	amount	An integer value greater than 0, representing the total amount in cents.
	orderId	A client order id, will be used as reference to the payment.
	paymentId	The token id issued by PayPal to initiate the transaction. Token will expire after 3 hours.
	paymentUrl	The URL issued by PayPal to initiate the transaction.
	paymentType	This parameter defines what kind of PayPal transaction you are initiating. Following types are supported sale. sale is used for a once-off payment. Default is set to sale.
	noShipping	Defines if shipping address will be made visible when customer logs into PayPal account to authorise the transaction. Set it to true if you don't want to make shipping address visible to customer - in case of digital goods.
	errorCode	If transaction was having some issues and field is populated with error code representing reason of failure.

Execute PayPal Transaction

To execute PayPal transaction:

POST https://payments-stest.npe.auspost.zone/v2/wallets/paypal/payments/orders/{orderId}/execute

curl https://payments-stest.npe.auspost.zone/v1/wallets/paypal/payments/orders/{orderId}/execute -X POST
 -H "Content-Type: application/json"
 -H "Authorization: Bearer xxxxxxxx"
 -d '{ "amount": 10000,
 "merchantCode": "YOUR_MERCHANT_CODE",
 "ip": "127.0.0.1",
 "payerId": "1234"
 }'

{
 "createdAt": "2021-07-23T13:00:53.128+10:00",
 "merchantCode": "YOUR_MERCHANT_CODE",
 "customerCode": "anonymous",
 "ip": "127.0.0.1",
 "amount": "10000",
 "status": "paid",
 "orderId": "0475f32d-fc23-4c02-b19b-9fe4b0a848ac",
 "providerReferenceNumber": "7LT4359579269504C"
}

Executes a PayPal express checkout transaction after the customer has logged into PayPal and accepted it.

HTTP Request

POST https://payments-stest.npe.auspost.zone/v2/wallets/paypal/payments/orders/{orderId}/execute

Header Parameters

	Parameter	Required	Description
	Authorization	Required	Bearer Access Token. Refer to client credentials for more information on obtaining an access token.
	Content-Type	Required	Should be set to application/json.

 Path Variables

	Parameter	Description
	orderId	A client's order id received after successful processing of Initiate PayPal Transaction.

Request Parameters

	Parameter	Required	Description
	merchantCode	Required	Merchant account for which the funds are collected.
	ip	Required	A customer IP address. Must be a valid IPv4 or IPv6.
	amount	Required	An integer value greater than 0, representing the total amount in cents for which the transaction will be initiated. Please note the amount field must be sent in cents i.e. if you are sending $1.00, the amount value should be 100. Do not send float values (1.00 will be treated as 1 cent).
	payerId	Required	The payer id returned from PayPal after customer has completed authorisation.

Response

	Name	Description
	createdAt	A timestamp when plan was created, in ISO Date Time format with offset from UTC/Greenwich e.g. 2021-07-23T13:00:53.128+10:00.
	merchantCode	Merchant account for which the funds are collected.
	customerCode	The identifier for the customer. In case of anonymous payment it is always anonymous.
	ip	Client IP address.
	amount	An integer value greater than 0, representing the total amount in cents.
	orderId	A client order id, will be used as reference to the payment.
	providerReferenceNumber	The transaction id returned from PayPal. Will be empty if no response has been received back from PayPal.
	providerDetails	The PayPal Provider Details associated with the transaction. Please note this field will only be returned if PayPal Gateway return those details.
	status	The status of the payment. Valid values are paid, failed, inprogress and unknown. Refer to the table below for details:

PayPal Express checkout transaction statuses

	Status	Description
	inprogress	The transaction is in pending state or it has not terminated, e.g. an authorisation may be awaiting completion.
	paid	The payment has been captured.
	failed	The payment has failed.
	unknown	The result of execution is not determined(e.g. due to connectivity issues). To verify the status in this case use retrieve PayPal order details endpoint.

Refund PayPal Transaction

To refund PayPal transaction:

POST https://payments-stest.npe.auspost.zone/v2/wallets/paypal/orders/{orderId}/refunds

curl https://payments-stest.npe.auspost.zone/v2/wallets/paypal/orders/{orderId}/refunds -X POST
 -H "Content-Type: application/json"
 -H "Authorization: Bearer xxxxxxxx"
 -d '{ "amount": 10000,
 "merchantCode": "YOUR_MERCHANT_CODE",
 "ip": "127.0.0.1"
 }'

{
 "createdAt": "2021-07-23T13:00:53.128+10:00",
 "merchantCode": "YOUR_MERCHANT_CODE",
 "customerCode": "anonymous",
 "ip": "127.0.0.1",
 "amount": "10000",
 "status": "paid",
 "orderId": "0475f32d-fc23-4c02-b19b-9fe4b0a848ac",
 "providerReferenceNumber": "7LT4359579269504C"
}

Refunds a previously executed PayPal transaction.

HTTP Request

POST https://payments-stest.npe.auspost.zone/v2/wallets/paypal/orders/{orderId}/refunds

Header Parameters

	Parameter	Required	Description
	Authorization	Required	Bearer Access Token. Refer to client credentials for more information on obtaining an access token.
	Content-Type	Required	Should be set to application/json.

Path Variables

	Parameter	Description
	orderId	A customer order id which was successfully processed previously which the merchant now wants to refund.

Request Parameters

	Parameter	Required	Description
	merchantCode	Required	Merchant account for which the funds are collected.
	ip	Required	A customer IP address. Must be a valid IPv4 or IPv6.
	amount	Required	An integer value greater than 0, representing the total amount in cents for which the transaction will be initiated. Please note the amount field must be sent in cents i.e. if you are sending $1.00, the amount value should be 100. Do not send float values (1.00 will be treated as 1 cent).

Response

	Name	Description
	createdAt	A timestamp when plan was created, in ISO Date Time format with offset from UTC/Greenwich e.g. 2021-07-23T13:00:53.128+10:00.
	merchantCode	Merchant account for which the funds are collected.
	customerCode	The identifier for the customer. In case of anonymous payment it is always anonymous.
	ip	Client IP address.
	amount	An integer value greater than 0, representing the total amount in cents.
	status	The status of the payment. Valid values are paid failed.
	orderId	A client order id, will be used as reference to the payment.
	providerReferenceNumber	The transaction id returned from paypal.
	errorCode	If transaction was having some issues and field is populated with error code representing reason of failure.

Retrieve PayPal order details

To retrieve status, billing & shipping details of PayPal payment by order id:

GET https://payments-stest.npe.auspost.zone/v2/wallets/paypal/orders/{orderId}?merchantCode={merchantCode}

curl -X GET https://payments-stest.npe.auspost.zone/v2/wallets/paypal/orders/{orderId}?merchantCode={merchantCode}
 -H "Content-Type: application/json"
 -H "Authorization: Bearer xxxxxxxx"

 {
 "orderId": "01cce4c5-3cf3-4fb5-81ea-2425e6c532d8",
 "paymentId": "PAYID-LWCHDSY21197268NE401560F",
 "status": "paid",
 "amount": "10000",
 "payerDetails": {
 "firstName": "Joe",
 "lastName": "Smith",
 "email": "joe.smith@some-email-address.com"
 },
 "shippingAddress": {
 "name": "Joe Smith",
 "streetLine1": "111 Bourke St",
 "city": "Melbourne",
 "stateCode": "VIC",
 "postcode": "3000",
 "countryCode": "AU"
 }
 }

Retrieves billing & shipping details for a customer that has previously initiated/executed a PayPal transaction.

HTTP Request

GET https://payments-stest.npe.auspost.zone/v2/wallets/paypal/orders/{orderId}?merchantCode={merchantCode}

Path Variables

	Parameter	Description
	orderId	A client order id, which is used as reference to the payment.

Request Parameters

	Parameter	Required	Description
	merchantCode	Required	Merchant account for which the funds are collected.

Header Parameters

	Parameter	Required	Description
	Authorization	Required	Bearer Access Token. Refer to client credentials for more information on obtaining an access token.
	Content-Type	Required	Should be set to application/json.

Response

	Name	Description
	orderId	The order id for the PayPal transaction.
	paymentId	The payment id which was issued by PayPal to initiate/execute the transaction.
	status	The transaction status for the order. Valid values are created, paid, failed,unknown. Once transaction is initiated the status is set to created. If the payment was processed and succeeded the status is set to paid. If payment was processed but was declined the status is set to failed. If the request was processed with unexpected status from gateway the status is set to unknown
	amount	An integer value greater than 0, representing the total amount in cents.
	payerDetails	The PayPal Payer details associated with the PayPal transaction.
	shippingAddress	The PayPal Shipping Address associated with the PayPal transaction.

PayPal Objects
PayPal Shipping Address Object

PayPal account owner shipping address returned as part of the response to a Retrieve PayPal order details request.

	Name	Description
	name	The name of the person associated with the shipping address.
	streetLine1	The first line of the street address.
	streetLine2	The second line of the street address (if there is one).
	city	The name of the city.
	stateCode	The name abbreviation of the state. Eg: (Victoria = VIC)
	postcode	The postal or zip code.
	countryCode	The code of the country. Eg: (Australia = AU)

PayPal Payer Details Object

PayPal account owner details returned as part of the response to a Retrieve PayPal order details request.

	Name	Description
	firstName	The payer's first name.
	lastName	The payer's last name.
	email	The payer's email address.

PayPal Provider Details Object

PayPal Provider details returned as part of the response to a Execute PayPal Transaction request.

	Name	Description
	reasonCode	Describes why the order status is inprogress. Possible values: CHARGEBACK, GUARANTEE, BUYER_COMPLAINT, REFUND, UNCONFIRMED_SHIPPING_ADDRESS, ECHECK, INTERNATIONAL_WITHDRAWAL, RECEIVING_PREFERENCE_MANDATES_MANUAL_ACTION, PAYMENT_REVIEW, REGULATORY_REVIEW, UNILATERAL, VERIFICATION_REQUIRED, TRANSACTION_APPROVED_AWAITING_FUNDING.

Error Codes

PayPal endpoints uses the following error codes:

	Response Code	Error Code	Originating System	Testable
	400	BAD_REQUEST -- Bad request data	SecurePay API	Yes
	400	INVALID_REQUEST_DATA -- Invalid request data	SecurePay API	Yes
	400	INVALID_ACCOUNT -- Account has not been configured for PayPal payments	SecurePay API	Yes
	400	INVALID_IP_ADDRESS -- Invalid IP address	SecurePay API	Yes
	400	INVALID_ORDER_ID -- Order id has to be unique per merchant	SecurePay API	Yes
	401	UNAUTHORIZED -- Provided invalid Auth Credentials. Bearer Access Token. Refer to client credentials for more information on obtaining an access token.	SecurePay API	Yes
	500	SYSTEM_ERROR -- Error happened in SecurePay API while processing request	SecurePay API	Yes
	500	PAYPAL_ERROR -- Error happened on PayPal end while processing request	SecurePay API	Yes - talk to SecurePay API team

3D Secure 2
Overview

3D Secure 2 (3DS2) is an additional layer of security that aids fraud prevention. 3DS2 is a protocol managed by EMVCo used to authenticate the identity of the person making the payment to ensure that they are the legitimate cardholder even before the payment is done.

This is done by providing the card issuer with a high volume of contextual data to aid in the decision on which authentication flow to be used. The card issuer checks whether the payment being requested is from the legitimate cardholder. This results to a more frictionless experience where customers are verified, and payment then proceeds. In cases where the issuer identifies that the transaction is high risk, they can prompt challenge questions for the customer to answer as an additional verification.

With SecurePay 3DS2 which currently supports protocol version 2.1.0, you will be able to authenticate before submitting payment authorisation requests. Depending on the result of authentication, merchants or issuers can bear responsibility during chargebacks when the payment authorised is found to be fraudulent and not authorised by the cardholder.

By utilising SecurePay’s 3DS2 Javascript, you will be able to send an authentication request for which you will receive the authentication result that includes the liability shift information. Depending on the authentication result, you will have the flexibility to decide whether to proceed or not with the payment authorisation.

SecurePay 3DS2 is supported for the following categories:

	Payment Types: Create Payment and PreAuth/InitialAuth
	Currencies: AUD
	Acquiring Bank with corresponding Card Types:

	Acquiring Bank	Visa	Mastercard	Amex
	NAB	✓	✓	
	Westpac	✓	✓	✓
	ANZ	✓	✓	
	CBA	✓	✓	✓
	Fiserv FDMSA	✓	✓	✓

Please note: to use the 3DS2 feature:
	If you are a Gateway merchant, you must contact your acquirer to enable 3DS2 for the card types you support
	You must complete the application steps via their SecurePay account or contacting our support team

Please note: 3DS2 is currently also available for Magento and WooCommerce e-commerce extensions.

3DS2 Javascript SDK
How does it work?

3DS2 authentication should be done before a payment authorisation request is sent. Authentication can be accomplished by using the 3DS2 JavaScript SDK, following either of the two methods below:

Recommended method:

	Initiate a 3DS2 Payment Order.
	Load the SecurePay 3DS2 Javascript client library.
	Initialise the 3D Secure script and configure the callback methods required during the checkout page load.
	Trigger the 3DS2 Authentication process when ready (i.e. Payment or checkout commenced).
	Handle the authentication outcome.

Alternate method:
This may increase in load time. Also, this can only be done once you have filled all the 3DS2 required fields.

	Initiate a 3DS2 Payment Order.
	Load the SecurePay 3DS2 Javascript client library.
	Initialise and trigger 3DS2 authentication together using the method initAndStartThreeDS.
	Handle the authentication outcome.

Please note: After authentication, the 3DS2 Payment Order should be passed into your Create Payment request and Create PreAuth/InitialAuth Transaction requests using `threedSecureDetails` request field.

Environment Details

	Environment	SecurePay 3DS2 JavaScript SDK URL
	Sandbox	https://test.api.securepay.com.au/threeds-js/securepay-threeds.js
	Live	https://api.securepay.com.au/threeds-js/securepay-threeds.js

Please note: Consumers of SecurePay UI must not host the script (3DS2 Javascript SDK) themselves.

Initiate A 3DS2 Payment Order

Initiate a Payment order of order type THREED_SECURE.

The following fields from the Initiate Payment Order response will be used for 3DS authentication process: orderToken, threedSecureDetails.providerClientId, threedSecureDetails.sessionId and threedSecureDetails.simpleToken

Please note: 3DS2 Payment Order can be reused for a maximum of 3 authentication attempts for the same payment request.

Load SecurePay 3DS2 JavaScript SDK

The securepay-threeds.js client library should be included in your HTML source as shown in the sample code:

Live Environment:
<script th:id="sp-threeds-js" th:src="https://api.securepay.com.au/threeds-js/securepay-threeds.js" type="text/javascript"></script>

Sandbox Environment:
<script th:id="sp-threeds-js" th:src="https://test.api.securepay.com.au/threeds-js/securepay-threeds.js" type="text/javascript"></script>

Initialise the 3D Secure JS
Add an iframe element for the Challenge Form

The 3DS2 will need a challenge window for some calls to get customer's input for the challenge. Hence create an element for this window to be published when required.

<iframe id="3ds-v2-challenge-iframe" name="3ds-v2-challenge-iframe" style="width: 500px; height: 500px; visibility:hidden;">

Once loaded, the script can be initialised with the following parameters.

var sp3dsConfig = {
 clientId: providerClientId,
 iframe: iframeElement,
 token: orderToken,
 simpleToken: simpleToken,
 threeDSSessionId: sessionId,
 onRequestInputData: onRequestInputDataCallback,
 onThreeDSResultsResponse: onThreeDSResultsResponseCallback,
 onThreeDSError: onThreeDSErrorCallback
};

var securePayThreedsUI = new window.SecurePayThreedsUI();
window.securePayThreedsUI = securePayThreedsUI;
securePayThreedsUI.initThreeDS(sp3dsConfig);

	Parameter	Description
	clientId	3DS2 Client Id of the merchant.
The value can be obtained from Initiate Payment order response, threedSecureDetails.providerClientId.
	iframe	The iframe element that can be used to display 3DS2 challenge form.
Iframe element should be defined in checkout/payment page and passed into the Java Script during initialisation.
 For example: In Add an iframe element, value will be:
document.getElementById(“3ds-v2-challenge-iframe”)
	token	An order token that was returned from Initiate Payment order response, orderToken
	simpleToken	A simple authentication token that was returned from Initiate Payment order response, threedSecureDetails.simpleToken
	threeDSSessionId	A unique session id (sessionId) that was returned from Initiate Payment order response. threedSecureDetails.sessionId
	onRequestInputData	See onRequestInputData callback section
	onThreeDSResultsResponse	See onThreeDSResultsResponse callback section
	onThreeDSError	See onThreeDSResultsResponse callback section

	If any of the config objects are missing, error VALIDATION_ERROR - missing mandatory config will be received.
	If the clientID provided is incorrect, error INITIALISATION_ERROR - JavaScript initialisation error will be received.
	If invalid type of iframe is used, then WRONG_CONFIG_TYPE_ERROR - config is not in expected format will be received.

Configure the callbacks required for the script
onRequestInputData callback

onRequestInputData callback will collect relevant information from customer to be used in an 3DS2 Authentication request. onRequestInputData callback is executed prior to an HTTP request initiated by 3DS2 javascript. The callback should return an object with the following details.

{
 "cardTokenInfo":{
 "cardholderName":"John More Doe",
 "cardToken":"6326270000000000"
 },
 "accountData":{
 "emailAddress":"john.doe@test.com",
 "mobilePhone":{
 "cc":"+61",
 "subscriber":"400000000"
 },
 "workPhone":{
 "cc":"+61",
 "subscriber":"400000000"
 },
 "homePhone":{
 "cc":"+61",
 "subscriber":"400000000"
 }
 },
 "billingAddress":{
 "city":"Suburb",
 "state":"NSW",
 "country":"AU",
 "zipCode":"2000",
 "streetAddress":"Unit 1",
 "detailedStreetAddress":"123 Street Suburb",
 "detailedStreetAddressAdditional":"123 Street Suburb"
 },
 "shippingAddress":{
 "city":"Suburb",
 "state":"NSW",
 "country":"AU",
 "zipCode":"2000",
 "streetAddress":"Unit 1",
 "detailedStreetAddress":"123 Street Suburb",
 "detailedStreetAddressAdditional":"123 Street Suburb"
 },
 "merchantRiskData":{
 "deliveryTimeframeType":"01",
 "reOrderType":"01",
 "shippingMethodType":"01"
 },
 "threeDSInfo":{
 "threeDSReqAuthMethodInd":"02"
 }
}

	Parameter	Required	Description
	cardTokenInfo	required	Card holder details associated with the issued card used for the purchase.
See CardTokenInfo Object
	accountData	required	Additional Information related to the card holder.
See AccountData Object
	billingAddress	required	Cardholder billing address associated with the card used for this purchase.
See Address Object
	shippingAddress	optional	Shipping address requested by the Cardholder.
See Address Object
	threeDSInfo	optional	Additional information associated with the Authentication request as required by different card schemes (e.g. visa, mastercard, diners, amex).
Required for Visa Cards Only. Card scheme can be found in the onTokeniseSuccess callback response TokenisedCard
See ThreeDSInfo Object
	merchantRiskData	optional	The Merchant Risk Data contains optional information about the specific purchase by the Cardholder.
 Card scheme can be found in the onTokeniseSuccess callback response TokenisedCard
See MerchantRiskData Object

CardTokenInfo Object

	Parameter	Required	Type	Description
	cardholderName	required	String	Name of the cardholder.
Alphanumeric characters including blank space ' '.
Minimum length of 2.
Maximum length of 45.
	cardToken	required	String	A tokenised payment instrument reference.
This value is used by the payment gateway to retrieve the actual card information, which is then used to perform the transaction.

AccountData Object

	Parameter	Required	Type	Description
	mobilePhone	optional	ContactNumber	The mobile phone number provided by the cardholder.
	workPhone	optional	ContactNumber	The work phone number provided by the cardholder
	homePhone	optional	ContactNumber	The home phone number provided by the cardholder
	emailAddress	required	String	The email address associated with the cardholder in string format.
Max length of 254.

ContactNumber Object

	Parameter	Required	Type	Description
	cc	required	String	Country code of the contact number.
A prefix of '+' followed by 1 to 3 numeric country code.
	subscriber	required	Integer	Subscriber number.
Maximum length of 15 numeric characters.
Mandatory if cc is provided and should follow string length according to country code.

Address Object

	Parameter	Required	Type	Description
	streetAddress	required	String	First Line of the street address.
Maximum length of 50 characters.
	detailedStreetAddress	optional	String	Second line of the street address.
Maximum length of 50 characters.
	detailedStreetAddressAdditional	optional	String	Third line of the street address.
Maximum length of 50 characters.
	city	required	String	Name of the City.
Maximum length of 50 characters.
	state	required	String	The state or province following ISO 3166-2.
	country	required	String	Country. Can contain the 3-digit numeric ISO code or the 2 or 3 alpha character ISO code.
	zipcode	required	String	ZIP or postal code. Maximum length of 16 characters.

ThreeDSInfo Object

	Parameter	Required	Type	Description
	threeDSReqAuthMethodInd	required	String	Method used to authenticate the user with the client web application. Accepted Values:
01: No 3DS Requestor authentication occurred (i.e. cardholder “logged in” as guest)
02: Login to the cardholder account at the 3DS Requestor system using 3DS Requestor’s own credentials
03: Login to the cardholder account at the 3DS Requestor system using federated ID
04: Login to the cardholder account at the 3DS Requestor system using issuer credentials
05: Login to the cardholder account at the 3DS Requestor system using third-party authentication
06: Login to the cardholder account at the 3DS Requestor system using FIDO Authenticator

MerchantRiskData Object

	Parameter	Required	Type	Description
	deliveryTimeframeType	Optional	String	The merchandise delivery timeframe. Accepted values:
01: Electronic Delivery
02: Same day shipping
03: Overnight shipping
04: Two-day or more shipping
	reOrderType	Optional	String	Indicates whether the cardholder is reordering previously purchased merchandise. Accepted values:
01: First time ordered
02: Reordered
	shippingMethodType	Optional	String	Indicates shipping method chosen for the transaction.
Merchants must choose the Shipping Indicator code that most accurately describes the cardholder’s specific transaction, not their general business.
If one or more items are included in the sale, use the Shipping Indicator code for the physical goods, or if all digital goods, use the Shipping Indicator code that describes the most expensive item.
Accepted values:
01: Ship to cardholder’s billing address
02: Ship to another verified address on file with merchant
03: Ship to address that is different than the cardholder’s billing address
04: “Ship to Store” / Pick-up at local store (Store address shall be populated in shipping address fields)
05: Digital goods (includes online services, electronic gift cards and redemption codes)
06: Travel and Event tickets, not shipped
07: Other (for example, Gaming, digital services not shipped, emedia subscriptions, etc.)
	deliveryEmailAddress	conditional	String	For Electronic delivery, the email address to which the merchandise was delivered.
Mandatory for Amex Card when shippingMethodType = 05.
Max length of 254.

onThreeDSResultsResponse callback

The onThreeDSResultsResponse callback provides the outcome of the 3DS2 authentication process. When 3DS2 authentication process has finished, this callback provides a liability shift indicator and other supporting parameters.

	Parameter	Type	Description
	liabilityShiftIndicator	String	Liability Shift Indicator.
This indicates whether the chargeback liability is shifted to the issuer
Possible values:
Y: Liability for relevant Chargeback reason codes is shifted to the issuer.
N: Liability for relevant Chargeback reason codes Is not shifted to the issuer.
 Refer to Liability Shift Indicator Matrix for more information
	transStatus	String	Transaction Status.
This value indicates whether a transaction qualifies as an authenticated transaction. It is received from the 3DS2 server and follows the EMVCo specification for 3DS2 data elements.
	transStatusReason	String	Transaction Status Reason.
It provides additional information to support the transStatus. It is received from the 3DS2 server and follows the EMVCo specification for 3DS2 data elements. Refer to Transaction Status Reason Codes for more information.
	eci	String	E-Commerce Indicator/Security Level Indicator(SLI)
This is a two-digit value returned by the Directory Server that indicates the result of the authentication.
	authenticationValue	String	Authentication Value. Also known as Cardholder Authentication Verification Value(CAVV).
This is a value returned by the Issuer ACS that performed the authentication.
	cardDescription	String	Card Brand Description used during authentication.

onThreeDSError callback

The onThreeDSError callback is used when there is a failure during the 3DS2 authentication process. Callback will be executed with a javascript array that contains one or more javascript objects, each object contains the following information. See Error codes for more information.

// Sample format for Error Object
[
 {
 id: 'b7e41d4f-0dc5-45ae-b5f3-c73f6e2943c9',
 code: '180',
 detail: 'Unable to perform 3DS Authentication'
 }
]

	Parameter	Type	Description
	id	String	A unique error id which can be used for troubleshooting.
	code	Integer	An error code indicating the error
	detail	String	Error details.

Trigger the 3DS2 Authentication

Once the script is initialised and all the callbacks configured correctly, the authentication process can be triggered. Example to Trigger 3DS2 authentication process

var spThreedsUI = window.securePayThreedsUI;
spThreedsUI.startThreeDS();

During this step, onRequestInputData callback will be used to collect necessary information to prepare an 3DS2 authentication request.

	If 3ds authentication process is triggered before the initialisation has completed, then error GENERIC_THREEDS_START_ERROR - Failed to start Threeds Authentication will be received.

Initialise and start 3DS

This is an alternate approach where we initialise and trigger the 3DS2 authentication in a single call. Please note that this call can only be done once we have all the callbacks configured correctly.

var sp3dsConfig = {
 clientId: providerClientId,
 iframe: iframeElement,
 token: orderToken,
 simpleToken: simpleToken,
 threeDSSessionId: sessionId,
 onRequestInputData: onRequestInputDataCallback,
 onThreeDSResultsResponse: onThreeDSResultsResponseCallback,
 onThreeDSError: onThreeDSErrorCallback
};

var securePayThreedsUI = new window.SecurePayThreedsUI();
window.securePayThreedsUI = securePayThreedsUI;
securePayThreedsUI.initAndStartThreeDS(sp3dsConfig);

Please note: After authentication, the 3DS2 Payment Order should be passed into your Create Payment request and Create PreAuth/InitialAuth Transaction requests using `threedSecureDetails` request field.

Handle the Authentication Outcome

Once the 3DS2 authentication process has finished, a callback will be done via onThreeDSResultsResponse callback to notify the authentication outcome.
This callback includes a Liability Shift Indicator and other supporting parameters.

If an error has occurred during the authentication process, a callback will be done via onThreeDSError callback.

Liability Shift Indicator

SecurePay receives eci (SLI) and authentication value (CAVV) from the 3D Secure server as part of the authentication process.
SecurePay uses the value of these parameters along with the card brand used during authentication to determine if the chargeback liability shifts to the issuer or stays with the merchant.
The shift indicates who will be responsible for relevant fraudulent chargebacks.
Along with the transStatus, transStatusReason, eci and authentication value, the Liability Shift Indicator is included in the response callback for merchant visibility as a guide, allowing the flexibility to decide whether to proceed with the payment or not.
Please note that the Liability Shift is applicable only to relevant fraud related chargebacks and is governed by individual scheme rules.

Liability Shift Indicator Matrix Object

	Card Brand	Authentication Value Presence	eci	Trans Status	Authentication Result	Liability Shift Indicator
	MasterCard	Yes	02	Y	Fully Authenticated	Y (Liability shifts to Issuer)
	MasterCard	Yes	01	A	Attempted Authentication	Y (Liability shifts to Issuer)
	MasterCard	No	00	N	Not Authenticated	N (Liability stays with Merchant)
	MasterCard	No	00	U	Unable to authenticate.	N (Liability stays with Merchant)
	MasterCard	No	00	R	Rejected	N (Liability stays with Merchant)
	MasterCard	Yes	07	Y	Fully Authenticated	Y (Liability shifts to Issuer)
	Visa	Yes	05	Y	Fully Authenticated	Y (Liability shifts to Issuer)
	Visa	Yes	06	A	Attempted Authentication	Y (Liability shifts to Issuer)
	Visa	No	06	A	Attempted Authentication	N (Liability stays with Merchant)
	Visa	No	07	N	Not Authenticated	N (Liability stays with Merchant)
	Visa	No	07	R	Rejected	N (Liability stays with Merchant)
	Visa	Yes	07	Y	Fully Authenticated	N (Liability stays with Merchant)
	Amex	Yes	05	Y	Fully Authenticated	Y (Liability shifts to Issuer)
	Amex	Yes	06	A	Attempted Authentication	Y (Liability shifts to Issuer)
	Amex	No		N	Not Authenticated	N (Liability stays with Merchant)
	Amex	No		R	Rejected	N (Liability stays with Merchant)
	Amex	No	07	U	Unable to authenticate.	N (Liability stays with Merchant)

Transaction Status Reason Codes

	Reason code	Detail	Description
	01	Card authentication failed	If this occurs multiple times for the same card, contact your Acquirer.
	02	Unknown Device	The device the cardholder used for authentication is not the same as the registered device. The cardholder needs to use the same device. If this information is not known, then the cardholder will need to contact their card issuer.
	03	Unsupported Device	The cardholder used a device that the ACS does not support e.g., unsupported OS, device not considered secure.
	04	Exceeds authentication frequency limit	The maximum limit of authentications has been exceeded. Wait to try again or try a different card. If issue persists, then the cardholder will need to contact the card Issuer.
	05	Expired card	Please check the expiry date of your card and try again.
	06	Invalid card number	The card number is invalid. Please check and re-enter the details or try a different card.
	07	Invalid transaction	There is an issue with the transaction. The cardholder will need to contact their card Issuer.
	08	No Card record	The card does not support 3DS or is not enrolled in 3DS from the Issuer. Please try a different card.
	09	Security failure	There is a security failure on this card. Please try a different card.
	10	Stolen card	Records show that the card used has been flagged as stolen. The cardholder will need to contact their card Issuer.
	11	Suspected fraud	Suspected fraudulent activity has been detected. The cardholder will need to contact their card Issuer.
	12	Transaction not permitted to cardholder	This type of transaction is not permitted. The cardholder will need to contact their card Issuer.
	13	Cardholder not enrolled in service	The card used is currently not enrolled for 3DS.
	14	Transaction timed out at the ACS	An authentication response has not been received within a given time, please try again shortly. If the problem persists, the cardholder will need to contact their card issuer.
	15	Low confidence	
	16	Medium confidence	
	17	High confidence	
	18	Very High confidence	
	19	Exceeds ACS maximum challenges	Number of failed challenges exceeded the maximum set by the ACS. Please wait and try again or try a different card.
	20	Non-Payment transaction not supported	ACS does not allow/support payment transactions (if received on a PA - Payment transaction) OR ACS does not allow/support non-payment transactions (if received on a NPA - Non Payment transaction).
	21	3RI transaction not supported	ACS does not allow/support merchant-initiated transactions.
	22–79	Reserved for EMVCo future use (values invalid until defined by EMVCo)	
	80–99	Reserved for DS use	

Error Codes

	Code	Detail	Originating System
	104	Invalid Merchant ID.
The provided clientID is incorrect.	SecurePay API
	151	Invalid ISO Currency Code.	SecurePay API
	176	Merchant Not Enrolled in 3D Secure.	SecurePay API
	180	Unable to perform 3DS Authentication.
Might be due to:
Card brand used is not supported for 3DS2.
Connection issue between 3DS server and Directory Server.
Mandatory field is incorrectly provided.	SecurePay API
	181	Card Unsupported for 3D Secure.	SecurePay API
	182	3D Secure Configuration Error.
Internal Error occurred preventing 3DS2 process to proceed.	SecurePay API
	183	Invalid value for <field>.	SecurePay API
	504	Unable to process the request.
Invalid Token is used or Token is expired.	SecurePay API
	515	Unable to process your request.
Timeout or internal connectivity errors.	SecurePay API
	517	Acquirer not configured for 3DS2 for used card type.	SecurePay API
	517	Liability Shift indicator error.	SecurePay API
	517	Unexpected value for <field>.	SecurePay API
	517	<field> must not be Null.	SecurePay API
	517	Order not in valid state.	SecurePay API
	517	Order intent used is invalid.	SecurePay API
	517	Invalid or Duplicate Request.	SecurePay API
	517	Invalid Origin.	SecurePay API

3DS2 Testing

Full testing scenarios and information can be found here: Card Testing 3DS2

Fraud detection - FraudGuard
Overview

Fraud detection - FraudGuard is a tool for transaction fraud detection and prevention. Developed by SecurePay, this tool reduces your exposure to fraudulent transactions by detecting fraud before it occurs. You can customise your fraud settings by establishing your own rules within a points system, so you’re always in control.

The Fraud Detection API performs a fraud check, and returns back its fraud risk assessment. Based on this assessment, you are able to decide on whether to go ahead with the transaction (by using the Payment API), or to stop the order from proceeding. You enjoy this flexibility with our fraud solution.

Rest API

Please note that for all requests timeout is 30 seconds.

The URLs mentioned throughout the Rest API documentation and in the code samples are for the sandbox environment.

To ensure you're using the correct URL please refer to Environment details.

Perform Fraud Detection

Performs fraud detection, given the following details.

To do fraud detection, use this code:

POST https://payments-stest.npe.auspost.zone/v2/antifraud/check

curl https://payments-stest.npe.auspost.zone/v2/antifraud/check -X POST
 -H "Content-Type: application/json"
 -H "Authorisation: Bearer xxxxxxxx"
 -d '{ "fraudCheckType": "FRAUD_GUARD",
 "ip": "127.0.0.1",
 "merchantCode": "YOUR_MERCHANT_CODE",
 "orderId": "0475f32d-fc23-4c02-b19b-9fe4b0a848ac",
 "paymentDetails": {
 "amount": 10000,
 "token": "de305d54-75b4-431b-adb2-eb6b9e546014",
 "paymentMethod": "PAYMENT_CARD"
 }
 }'

{
 "orderId": "17df5bdb-f17a-48d7-99f9-ff2d9660db97",
 "fraudCheckType": "FRAUD_GUARD",
 "fraudCheckResult": {
 "providerReferenceNumber": "0bde9e63-d41a-4e4a-be7f-3949411f1f2e",
 "score": 0,
 "providerResponseMessage": "Fraud check passed"
 }
}

HTTP Request

POST https://payments-stest.npe.auspost.zone/v2/antifraud/check

Header Parameters

	Parameter	Required	Description
	Authorization	Required	Bearer Access Token. Refer to client credentials for more information on obtaining an access token.
	Content-Type	Required	Should be set to application/json.

Request Parameters

	Parameter	Type	Required	Description
	ip	String	Required	A customer IP address. Must be a valid IPv4.
	orderId	String	Optional	A client order id, which will be used as reference to fraud check. If not provided, SecurePay API will assign a unique id for the order.
	merchantCode	String	Required	Merchant account code for which fraud check is performed.
	fraudCheckType	String	Required	This parameter defines which type of fraud check is used. Supported type is FRAUD_GUARD.
	paymentDetails	Object	Required	The Payment Details Object.
	customerDetails	Object	Optional	The Customer Details Object.
	shippingAddress	Object	Optional	The Shipping Address Object.
	billingAddress	Object	Optional	The Billing Address Object.
	customerCode	String	Optional	A unique (within your organisation) identifier of your customer. Should not be longer than 30 characters. This is used when you want to perform a fraud request against a stored payment instrument. Please note anonymous is a reserved keyword and must not be used.

Response

	Name	Type	Description
	orderId	String	A client order id, which will used as reference to fraud check.
	fraudCheckType	String	Returns type of fraud check performed. Values could be FRAUD_GUARD.
	fraudCheckResult	Object	Fraud check result. Refer to Fraud Check Result for more details.
	customerCode	String	The identifier for the customer. In case of anonymous payment it is always anonymous.

Fraud Objects
Payment Details Object

Payment details to include as part of a Perform Fraud Detection request.

	Name	Type	Required	Description
	amount	Integer	Required	An integer value greater than 0, representing the total amount in cents to charge the provided (tokenised) payment instrument. Please note the amount field must be sent in cents i.e. if you are sending $1.00, the amount value should be 100. Do not send float values (1.00 will be treated as 1 cent).
	paymentMethod	String	Required	The payment method used by the customer. Supported value is PAYMENT_CARD.
	token	String	Required	A tokenised payment instrument reference. This value is used by the payment gateway to retrieve the actual card information for paymentMethod PAYMENT_CARD.

Customer Details Object

Customer details to include as part of a Perform Fraud Detection request.

	Name	Type	Required	Description	Validation rule
	emailAddress	String	Optional	Customer email	Should contain @ character and at least one preceding and following character, up to 60 characters

Shipping Address Object

Customer shipping address details to include as part of a Perform Fraud Detection request.

	Name	Type	Required	Description	Validation rule
	firstName	String	Optional	Customer shipping first name	Should not be longer than 30 characters
	lastName	String	Optional	Customer shipping last name	Should not be longer than 30 characters
	city	String	Optional	Customer shipping city	Should not be longer than 20 characters
	postcode	String	Optional	Customer shipping postcode	Should not be longer than 4 characters
	countryCode	String	Optional	Customer shipping country code	3 characters long country code in ISO 3166-1

Billing Address Object

Customer billing address details to include as part of a Perform Fraud Detection request.

	Name	Type	Required	Description	Validation rule
	countryCode	String	Optional	Customer billing country code	3 characters long country code in ISO 3166-1

Fraud Check Result Object

Detailed part of the response to a Perform Fraud Detection request.

	Name	Type	Description
	providerReferenceNumber	String	The fraud check reference number.
	score	Integer	The result of the fraud check.
	providerResponseMessage	String	This field contains details of the result.

Fraud Error Codes

Fraud endpoint uses the following error codes:

	Response Code	Error Code	Originating System	Testable
	400	BAD_REQUEST -- Send malformed JSON in request	SecurePay API	Yes
	400	INVALID_IP_ADDRESS -- Invalid IP address	SecurePay API	Yes
	400	INVALID_ACCOUNT -- Account is not configured for fraud check type provided in request	Payment Gateway	No
	500	SYSTEM_ERROR -- Error happened in SecurePay API while processing request	SecurePay API	Yes
	500	FRAUD_CHECK_ERROR -- Error while doing fraud check from Payment Gateway	Payment Gateway	No

Fraud detection - ACI ReD Shield
Overview

Fraud detection – ACI ReD Shield is another tool for transaction fraud detection and prevention. This tool is provided by a third party, ACI Worldwide.

The Fraud Detection API performs a fraud check, and returns back its fraud risk assessment. Based on this assessment, you are able to decide on whether to go ahead with the transaction (by using the Payment API), or to stop the order from proceeding. You enjoy this flexibility with our fraud solution.

Please note, this service is in alpha and not publicly available.

Fraud Javascript SDK

Fraud integration JS SDK integration:

<script>
 var io_install_flash = false;
 var io_install_stm = false;
</script>

<script type="text/javascript" src="https://mpsnare.iesnare.com/snare.js"></script>

<script>
 function io_bb_callback(bb, complete) {
 console.log("Blackbox: " + bb,complete);
 }
</script>

The fraud detection with ACI ReD endpoint requires device fingerprint field to be included as part of the customer-object.
The device fingerprint generation and validation is provided by Iovation ReputationManager 360 (Iovation Javascript SDK).

The snare.js script should be included in your HTML source as shown in the sample code:

The callback function "io_bb_callback" will be called with two arguments.

	bb: blackbox (The device fingerprint)
	complete : true/false flag to denote the process completion.

See the Iovation Integration Guide for more info:

Rest API

Please note that for all requests timeout is 30 seconds.

The URLs mentioned throughout the Rest API documentation and in the code samples are for the sandbox environment.

To ensure you're using the correct URL please refer to Environment details.

Perform Fraud Detection

Performs fraud detection, given the following details.

To do fraud detection, use this code:

POST https://payments-stest.npe.auspost.zone/v2/antifraud/check

curl https://payments-stest.npe.auspost.zone/v2/antifraud/check -X POST
 -H "Content-Type: application/json"
 -H "Authorisation: Bearer xxxxxxxx"
 -d '{ "fraudCheckType": "ACI_FRAUD_CHECK",
 "ip": "127.0.0.1",
 "merchantCode": "YOUR_MERCHANT_CODE",
 "orderId": "0475f32d-fc23-4c02-b19b-9fe4b0a848ac",
 "paymentDetails": {
 "amount": 10000,
 "token": "de305d54-75b4-431b-adb2-eb6b9e546014",
 "paymentMethod": "PAYMENT_CARD"
 }
 }'

{
 "orderId": "0475f32d-fc23-4c02-b19b-9fe4b0a848ac",
 "fraudCheckType": "ACI_FRAUD_CHECK",
 "fraudCheckResult": {
 "providerReferenceNumber": "70113",
 "result": "PASSED",
 "providerResponseMessage": "Transaction accepted"
 }
}

HTTP Request

POST https://payments-stest.npe.auspost.zone/v2/antifraud/check

Header Parameters

	Parameter	Required	Description
	Authorization	Required	Bearer Access Token. Refer to client credentials for more information on obtaining an access token.
	Content-Type	Required	Should be set to application/json.

Request Parameters

	Parameter	Type	Required	Description
	ip	String	Required	A customer IP address. Must be a valid IPv4.
	orderId	String	Optional	A client order id, which will be used as reference to fraud check. If not provided, SecurePay API will assign a unique id for the order.
	merchantCode	String	Required	Merchant account code for which fraud check is performed.
	fraudCheckType	String	Required	This parameter defines which type of fraud check is used. Supported type is ACI_FRAUD_CHECK.
	paymentDetails	Object	Required	The Payment Details Object.
	merchantWebsite	String	Optional	Merchant website url.
	productDetails	Object	Optional	The list of Product Details Objects.
	customerDetails	Object	Optional	The Customer Details Object.
	shippingAddress	Object	Optional	The Shipping Address Object.
	billingAddress	Object	Optional	The Billing Address Object.
	customFields	Object	Optional	The Custom fields Object.
	customerCode	String	Optional	A unique (within your organisation) identifier of your customer. Should not be longer than 30 characters. This is used when you want to perform a fraud request against a stored payment instrument. Please note anonymous is a reserved keyword and must not be used.

Response

	Name	Type	Description
	orderId	String	A client order id, which will used as reference to fraud check.
	fraudCheckType	String	Returns type of fraud check performed. Values could be ACI_FRAUD_CHECK.
	fraudCheckResult	String	Fraud check result. Refer to Fraud Check Result for more details.
	customerCode	String	The identifier for the customer. In case of anonymous payment it is always anonymous.

Fraud Objects
Payment Details Object

Payment details to include as part of a Perform Fraud Detection request.

	Name	Type	Required	Description
	amount	Integer	Required	An integer value greater than 0, representing the total amount in cents to charge the provided (tokenised) payment instrument. Please note the amount field must be sent in cents i.e. if you are sending $1.00, the amount value should be 100. Do not send float values (1.00 will be treated as 1 cent).
	paymentMethod	String	Required	The payment method used by the customer. Supported value is PAYMENT_CARD.
	token	String	Required	A tokenised payment instrument reference. This value is used by the payment gateway to retrieve the actual card information for paymentMethod PAYMENT_CARD.

Product Details Object

Product details to include as part of a Perform Fraud Detection request.
Product details should be passed as a list of Product details objects.

	Name	Type	Required	Description	Validation rule
	sku	String	Optional	Product identifier	Should not be longer than 12 characters
	itemQuantity	Integer	Optional	Product quantity	An integer value greater than 0 and up to 12 digits long.
	itemDescription	String	Optional	Product description	Should not be longer than 127 characters
	itemUnitPrice	Integer	Optional	Product unit price	An integer value greater than 0 and up to 12 digits long, representing the unit price in cents.
	itemPartNumber	String	Optional	Product part number	Should not be longer than 30 characters
	itemShippingComment	String	Optional	Product shipping comment	Should not be longer than 160 characters
	itemGiftMessage	String	Optional	Product gift message	Should not be longer than 160 characters

Customer Details Object

Customer details to include as part of a Perform Fraud Detection request.

	Name	Type	Required	Description	Validation rule
	emailAddress	String	Optional	Customer email	Should contain @ character and at least one preceding and following character, up to 60 characters
	phoneNumber	String	Optional	Customer phone number	Should contain digits only, up to 19 digits
	deviceFingerprint	String	Optional	Customer device fingerprint - Refer to fraud_integration to get this field	Should contain less than or equal to 6000 characters

Shipping Address Object

Customer shipping address details to include as part of a Perform Fraud Detection request.

	Name	Type	Required	Description	Validation rule
	firstName	String	Optional	Customer shipping first name	Should not be longer than 30 characters
	lastName	String	Optional	Customer shipping last name	Should not be longer than 30 characters
	streetLine1	String	Optional	Customer shipping street name	Should not be longer than 30 characters
	streetLine2	String	Optional	Customer shipping street name	Should not be longer than 30 characters
	city	String	Optional	Customer shipping city	Should not be longer than 20 characters
	postcode	String	Optional	Customer shipping postcode	Should not be longer than 4 characters
	stateCode	String	Optional	Customer shipping state code	Should not be longer than 10 characters
	countryCode	String	Optional	Customer shipping country code	3 characters long country code in ISO 3166-1

Billing Address Object

Customer billing address details to include as part of a Perform Fraud Detection request.

	Name	Type	Required	Description	Validation rule
	firstName	String	Optional	Customer billing first name	Should not be longer than 30 characters
	lastName	String	Optional	Customer billing last name	Should not be longer than 30 characters
	streetLine1	String	Optional	Customer billing street name	Should not be longer than 30 characters
	streetLine2	String	Optional	Customer billing street name	Should not be longer than 30 characters
	city	String	Optional	Customer billing city	Should not be longer than 20 characters
	postcode	String	Optional	Customer billing postcode	Should not be longer than 4 characters
	stateCode	String	Optional	Customer billing state code	Should not be longer than 10 characters
	countryCode	String	Optional	Customer billing country code	3 characters long country code in ISO 3166-1

Custom Fields Object

Custom fields to include as part of a Perform Fraud Detection request.
If fraud check provider has capability to allow merchant to configure custom rules, merchant can use Custom Fields.
Once custom rules are configured on fraud provider portal (e.g. ACI Fraud Check), merchant could use the Custom Fields to trigger specific rules.
At the moment custom rules are supported only for ACI_FRAUD_CHECK.

	Name	Type	Required	Description	Validation rule
	customField1	String	Optional	Custom fraud check rules	Should not be longer than 256 characters
	customField2	String	Optional	Custom fraud check rules	Should not be longer than 256 characters
	customField3	String	Optional	Custom fraud check rules	Should not be longer than 256 characters
	customField4	String	Optional	Custom fraud check rules	Should not be longer than 256 characters
	customField5	String	Optional	Custom fraud check rules	Should not be longer than 256 characters

Fraud Check Result Object

Detailed part of the response to a Perform Fraud Detection request.

	Name	Type	Description
	providerReferenceNumber	String	The fraud check reference number.
	result	String	The result of the fraud check. Valid values are PASSED, SUSPECTED or BLOCKED.
	providerResponseMessage	String	This field contains details of the result.

Fraud Error Codes

Fraud endpoint uses the following error codes:

	Response Code	Error Code	Originating System	Testable
	400	BAD_REQUEST -- Send malformed JSON in request	SecurePay API	Yes
	400	INVALID_IP_ADDRESS -- Invalid IP address	SecurePay API	Yes
	500	SYSTEM_ERROR -- Error happened in SecurePay API while processing request	SecurePay API	Yes
	500	FRAUD_CHECK_ERROR -- Error while doing fraud check from Payment Gateway	Payment Gateway	No

Scheduled Payments
Overview

Scheduling API provide merchant capability to create once off payment on specified date or recurring payments.
Note, that a card token needs to be stored against customer through Create payment instrument endpoint prior of creating a schedule.
The period of recurring payments could be custom day interval or calendar intervals such as weekly, fortnightly, monthly, quarterly, half yearly or annually.

Rest API

Please note that for all requests timeout is 30 seconds.

The URLs mentioned throughout the Rest API documentation and in the code samples are for the sandbox environment.

To ensure you're using the correct URL please refer to Environment details.

Create a once off payment on specified date

To create a once off payment on specified date:

POST https://payments-stest.npe.auspost.zone/v2/payments/schedules/once-off

curl https://payments-stest.npe.auspost.zone/v2/payments/schedules/once-off -X POST
 -H "Content-Type: application/json"
 -H "Authorization: Bearer xxxxxxxx"
 -d '{
 "ip": "127.0.0.1",
 "referenceNumber": "Invoice 123",
 "token": "de305d54-75b4-431b-adb2-eb6b9e546014",
 "merchantCode": "YOUR_MERCHANT_CODE",
 "customerCode": "YOUR_CUSTOMER_CODE",
 "amount": 10000,
 "payDate": "2019-12-03"
 }'

{
 "ip": "127.0.0.1",
 "scheduleId": "559d4616-ff9c-4ce2-ad6f-93983ff69ee4",
 "referenceNumber": "Invoice 123",
 "token": "de305d54-75b4-431b-adb2-eb6b9e546014",
 "merchantCode": "YOUR_MERCHANT_CODE",
 "customerCode": "YOUR_CUSTOMER_CODE",
 "amount": 10000,
 "payDate": "2019-12-03"
}

Creates once off payment on specified date in the future.

HTTP Request

POST https://payments-stest.npe.auspost.zone/v2/payments/schedules/once-off

Header Parameters

	Parameter	Required	Description
	Authorization	Required	Bearer Access Token. Refer to client credentials for more information on obtaining an access token.
	Content-Type	Required	Should be set to application/json.

Request Parameters

	Parameter	Type	Required	Description
	ip	String	Required	A customer IP address. Must be a valid IPv4 or IPv6.
	referenceNumber	String	Required	A transaction identifier. This value will appear against all processed transactions. Typically an invoice number. Should not be longer than 30 characters.
	merchantCode	String	Required	Merchant account for which the funds are collected.
	customerCode	String	Required	A unique (within your organisation) identifier of your customer. Should not be longer than 30 characters. Please note anonymous is a reserved keyword and must not be used.
	amount	Number	Required	An integer value greater than 0, representing the amount in cents. Please note the amount field must be sent in cents i.e. if you are sending $1.00, the amount value should be 100. Do not send float values (1.00 will be treated as 1 cent).
	token	String	Required	A tokenised payment instrument reference.
	payDate	String	Required	The date in ISO 8601 format when the payment should be made, for example 2020-01-13. Should be not earlier than the next day.

Response

	Name	Type	Description
	ip	String	Client IP address.
	scheduleId	String	A unique schedule id, will be used as reference to the schedule.
	referenceNumber	String	A transaction identifier. This value will appear against all processed transactions. Typically an invoice number.
	merchantCode	String	Merchant account for which the funds are collected.
	customerCode	String	A unique (within your organisation) identifier of your customer.
	amount	Number	An integer value greater than 0, representing the amount in cents.
	token	String	A tokenised payment instrument reference.
	payDate	String	The date in ISO 8601 format when the payment should be made, for example 2020-01-13.

Create a payment schedule

To create a recurring scheduled payment:

POST https://payments-stest.npe.auspost.zone/v2/payments/schedules/recurring

curl https://payments-stest.npe.auspost.zone/v2/payments/schedules/recurring -X POST
 -H "Content-Type: application/json"
 -H "Authorization: Bearer xxxxxxxx"
 -d '{
 "ip": "127.0.0.1",
 "referenceNumber": "Invoice 123",
 "token": "de305d54-75b4-431b-adb2-eb6b9e546014",
 "merchantCode": "YOUR_MERCHANT_CODE",
 "customerCode": "YOUR_CUSTOMER_CODE",
 "amount": 1000,
 "recurringTransaction": true,
 "scheduleDetails": {
 "paymentIntervalType": "DAILY_INTERVAL",
 "intervalLength": 10,
 "startDate": "2019-12-03",
 "endDate": "2020-04-23"
 }
 }'

{
 "ip": "127.0.0.1",
 "scheduleId": "559d4616-ff9c-4ce2-ad6f-93983ff69ee4",
 "referenceNumber": "Invoice 123",
 "token": "de305d54-75b4-431b-adb2-eb6b9e546014",
 "merchantCode": "YOUR_MERCHANT_CODE",
 "customerCode": "YOUR_CUSTOMER_CODE",
 "amount": 10000,
 "recurringTransaction": true,
 "scheduleDetails": {
 "paymentIntervalType": "DAILY_INTERVAL",
 "intervalLength": 10,
 "startDate": "2019-12-03",
 "endDate": "2020-04-23",
 "lastPaymentDate": "2020-04-21"
 }
}

Creates a payment schedule.

HTTP Request

POST https://payments-stest.npe.auspost.zone/v2/payments/schedules/recurring

Header Parameters

	Parameter	Required	Description
	Authorization	Required	Bearer Access Token. Refer to client credentials for more information on obtaining an access token.
	Content-Type	Required	Should be set to application/json.

Request Parameters

	Parameter	Type	Required	Description
	ip	String	Required	A customer IP address. Must be a valid IPv4 or IPv6.
	referenceNumber	String	Required	A transaction identifier. This value will appear against all processed transactions. Typically an invoice number. Should not be longer than 30 characters.
	merchantCode	String	Required	Merchant account for which the funds are collected.
	customerCode	String	Required	A unique (within your organisation) identifier of your customer. Should not be longer than 30 characters. Please note anonymous is a reserved keyword and must not be used.
	amount	Number	Required	An integer value greater than 0, representing the amount in cents. Please note the amount field must be sent in cents i.e. if you are sending $1.00, the amount value should be 100. Do not send float values (1.00 will be treated as 1 cent).
	token	String	Required	A tokenised payment instrument reference.
	recurringTransaction	Boolean	Required	Whether a Merchant has agreement with a Cardholder, whereby the Cardholder authorizes the Merchant to store and use the Cardholder's credit card data periodically and on an ongoing basis. For a recurring payment transaction expiry date and CVV in most cases are ignored by the bank.
	scheduleDetails	Object	Required	A schedule details request object.

Response

	Name	Type	Description
	ip	String	Client IP address.
	scheduleId	String	A unique schedule id, will be used as reference to the schedule.
	referenceNumber	String	A transaction identifier. This value will appear against all processed transactions. Typically an invoice number.
	merchantCode	String	Merchant account for which the funds are collected.
	customerCode	String	A unique (within your organisation) identifier of your customer.
	amount	Number	An integer value greater than 0, representing the amount in cents.
	token	String	A tokenised payment instrument reference.
	recurringTransaction	Boolean	Whether a Merchant has agreement with a Cardholder, whereby the Cardholder authorizes the Merchant to store and use the Cardholder's credit card data periodically and on an ongoing basis. For a recurring payment transaction expiry date and CVV in most cases are ignored by the bank.
	scheduleDetails	Object	A schedule details response object.

Delete a payment schedule or a once off payment on specified date

To delete a payment schedule or a once off payment on specified date:

DELETE https://payments-stest.npe.auspost.zone/v2/payments/schedules/559d4616-ff9c-4ce2-ad6f-93983ff69ee4

curl https://payments-stest.npe.auspost.zone/v2/payments/schedules/559d4616-ff9c-4ce2-ad6f-93983ff69ee4 -X DELETE
 -H "Content-Type: application/json"
 -H "Authorization: Bearer xxxxxxxx"
 -d '{
 "ip": "127.0.0.1",
 "merchantCode": "YOUR_MERCHANT_CODE"
 }'

{
 "ip": "127.0.0.1",
 "merchantCode": "YOUR_MERCHANT_CODE",
 "scheduleId": "559d4616-ff9c-4ce2-ad6f-93983ff69ee4"
}

Deletes an existing payment schedule or a once off payment on specified date in the future. Use scheduleId value returned by Create a payment schedule endpoint or Create a once off payment on specified date endpoint.

HTTP Request

DELETE https://payments-stest.npe.auspost.zone/v2/payments/schedules/{scheduleId}

Header Parameters

	Parameter	Required	Description
	Authorization	Required	Bearer Access Token. Refer to client credentials for more information on obtaining an access token.
	Content-Type	Required	Should be set to application/json.

Request Parameters

	Parameter	Type	Required	Description
	ip	String	Required	A customer IP address. Must be a valid IPv4 or IPv6.
	scheduleId	String	Required	A unique schedule id returned by Create a payment schedule endpoint or Create a once off payment on specified date endpoint.

Response

	Name	Type	Description
	ip	String	Client IP address.
	scheduleId	String	The schedule id that has been deleted.
	merchantCode	String	Merchant account for which the funds are collected.

Scheduling Objects
Schedule Details Object Request

Schedule details to include as part of a Create schedule request.

	Name	Type	Required	Description
	paymentIntervalType	String	Required	Type of scheduling, possible values are DAILY_INTERVAL, WEEKLY, FORTNIGHTLY, MONTHLY, QUARTERLY, HALF_YEARLY, ANNUALLY. If schedulingType is set to DAILY_INTERVAL, a length in days should be provided in intervalLength field.
	intervalLength	Number	Conditional	Required when schedulingType is DAILY_INTERVAL, specifies the number of days between payments. Must be positive number.
	startDate	String	Required	The date in ISO 8601 format when the first payment should be made, for example 2020-01-13. Should be not earlier than the next day.
	endDate	String	Optional	The date in ISO 8601 format when the last payment should be made, for example 2020-04-13. Should be later than startDate field. If the endDate is not specified, payments will occur indefinitely until schedule is deleted.

Schedule Details Object Response

Schedule details in Create schedule response.

	Name	Type	Required	Description
	paymentIntervalType	String	Required	Type of scheduling, possible values are DAILY_INTERVAL, WEEKLY, FORTNIGHTLY, MONTHLY, QUARTERLY, HALF_YEARLY, ANNUALLY. If schedulingType is set to DAILY_INTERVAL, a length in days should be provided in intervalLength field.
	intervalLength	Number	Conditional	Required when paymentIntervalType is DAILY_INTERVAL, specifies length of scheduling interval. Must be positive number.
	startDate	String	Required	The date in ISO 8601 format when the first payment should be made, for example 2020-01-13. Should be not earlier than the next day.
	endDate	String	Optional	The date in ISO 8601 format when the last payment should be made, for example 2020-04-13. Should be later than startDate field. If the endDate is not specified, payments will occur indefinitely until schedule is deleted.
	lastPaymentDate	String	Conditional	If endDate if provided in create schedule request, lastPaymentDate will provide actual last payment date based on startDate and paymentIntervalType provided, could be differ from endDate provided in request.

Error Codes

	Response Code	Error Code	Originating System	Testable
	400	BAD_REQUEST -- Bad request data	SecurePay API	Yes
	400	INVALID_REQUEST_DATA -- Invalid request data	SecurePay API	Yes
	400	INVALID_ACCOUNT -- Account has not been configured for credit card payments	SecurePay API	Yes
	400	INVALID_IP_ADDRESS -- Invalid IP address	SecurePay API	Yes
	401	UNAUTHORIZED -- Provided invalid Auth Credentials. Bearer Access Token. Refer to client credentials for more information on obtaining an access token.	SecurePay API	Yes
	500	SYSTEM_ERROR -- Error happened in SecurePay API while processing request	SecurePay API	Yes
	500	GATEWAY_ERROR -- Error from Payment Gateway	Payment Gateway	No
	504	TIMED_OUT -- Payment Gateway took too long to respond	Payment Gateway	No

Errors
Overview
{
 "errors": [
 {
 "id": "1a909ec1-c96c-4ced-a471-d145a0e517ef",
 "code": "MIN_CONSTRAINT_VIOLATION",
 "detail": "must be greater than or equal to 1",
 "source": {
 "pointer": "amount"
 }
 }
]
}

In case of an error from SecurePay API, the following response is returned.

Response

	Name	Required	Description	Type
	errors	Yes	List of error objects	Error

Error

	Name	Required	Description
	id	Yes	Unique identifier for the error
	code	Yes	Endpoint specific error code
	detail	Yes	Detailed error description
	source.pointer	No	If error is related to specific field in request, this param will be populated with the field name

Other Integration methods
Overview

SecurePay offers other integration methods to accept payments through your website or handle bill payments.
To find out more about services or obtain credentials to use these services, contact the team here.

Integration guides

 XML API Integration
 The XML API ts transaction information to SecurePay for processing. It also supports Fraud Guard.

 Hosted Payment Pages - SecureFrame
 SecureFrame offers a secure and flexible hosted service that helps you meet your PCI DSS obligations. It also supports Fraud Guard.

 Hosted Payment Pages - Direct Post
 Direct Post is a payment service that accepts customer data posted directly from a form on your website. It also supports Fraud Guard.

 Online Bill Payment – SecureBill Hosted Payment Page
 A hosted payment page tailored to bill payments, SecureBill is suitable for government and organisations that render invoices. It also supports Fraud Guard.

 XML API – Card Storage and Scheduled Payments
 Secure XML API – Card Storage and Scheduled Payments transmits information to SecurePay to securely store customer details.

 SecurePay Batch
 SecurePay Batch is a method for uploading transactions in a file for processing once daily.

 SecurePay Merchant Portal User Guide
 This guide provides an overview of how to use the Merchant Portal. The portal offers payment tools and reporting features to help manage your account.

 SecurePay Response Codes
 Bank and SecurePay Response Codes.

 SecurePay 3D Secure 2
 3D Secure 2 is our solution to help ensure cardholder authentication and protection against fraudulent transactions.

e-Commerce extensions
Overview

SecurePay offer a smooth integration with the most popular e-Commerce extensions, and we maintain the latest selection.

eCommerce compatibility of payment features

		Magento	WooCommerce	PrestaShop	Opencart
	Card Payments / Refunds	✓	✓	✓	✓
	Apple Pay	✓	✓		
	Fraudguard	✓	✓		
	Dynamic Currency Conversion	✓	✓		
	3DS2	✓	✓		

AliPay and WeChat payment method are not supported anymore and will be removed from our extensions in near future.

	Apple Pay is available on NAB, ANZ and Fiserv (Westpac, Bankwest, St.George, Macquarie, FDMSA) acquiring bank links.
	You must be using SecurePay API to use the payment features
	Gateway or SecurePay Online Payments accounts are supported
	To use the payment features you need to sign up and enable through SecurePay here

Magento

See compatibility of e-Commerce extensions in overview here

SecurePay API Magento Install Instructions

This guide outlines the download and install instructions for the SecurePay API Magento extension.

The current version of the SecurePay API Magento extension is 2.0.1

	Latest version	
 Version 2.0.1, 20th June 2023

 	Updated to be compatible with php8.2

	Version history	
 For previous versions please refer changelog.txt

Part 1 - Download the extension

Download the extension to get started:

Download

Part 2 - Install the extension

	Upload the extension file to the Magento2_root/app/code folder of your Magento installation using FTP, SFTP or SSH - depending on your server setup

	Unzip the extension

	Connect into php the server (via SSH) and execute the following commands:

bin/magento setup:upgrade
php bin/magento setup:di:compile
php bin/magento setup:static-content:deploy
php bin/magento cache:clean
php bin/magento cache:flush

Part 3 - Configure the SecurePay extension

	Enable and configure SecurePay API in Magento Admin under Stores > Configuration > Sales -> Payment Methods > SecurePay Payment

	Find the SecurePay API payment method and open to view the configuration options
[image:]

	Edit options where required

	Clear Magento cache

OpenCart

See compatibility of e-Commerce extensions in overview here

SecurePay API OpenCart Install Instructions

This guide outlines the download and install instructions for the SecurePay API OpenCart extension.

The current version of the SecurePay API OpenCart extension is 1.3.0

	Latest version	
 Version 1.3.0, 4th August 2022

 	General fix

Part 1 - Download the extension

Download the extension to get started:

Download

Part 2 - Install the extension

	Login to your OpenCart admin interface

	Navigate to Extensions > Installer

	Click on the [image: upload] button

	Browse your computer to find the downloaded extension (with .ocmod.zip extension), and upload the extension

	Navigate to Extensions > Modifications

	Click on the [image: refresh] button

Part 3 - Configure the SecurePay extension

	Navigate to Extensions > Extensions

	Select Payments in Choose the extension type dropdown
[image:]

	Click the Plus sign on the right of SecurePay Payment method to enable it
[image:]

	After the payment method has been enabled, click the Pen button to open the configuration options. Fill the form with required information and click the Save button on the top right.
[image:]

WooCommerce

See compatibility of e-Commerce extensions in overview here

SecurePay API WooCommerce Install Instructions

This guide outlines the download and install instructions for the SecurePay API WooCommerce extension.

The current version of the SecurePay API WooCommerce extension is 2.0.3

	Latest version	
 Version 2.0.3, 25th July 2023

 	Updated: Ensure that card token is always present before making payment call

	Version history	
 For previous versions please refer changelog.txt

Part 1 - Download the extension

Download the extension to get started:

Download

Part 2 - Install the extension

	Login to your Wordpress admin interface

	Navigate to Plugins > Add New

	Click on the Upload Plugin button at the top of the page

	Browse your computer to find the downloaded extension, and upload the extension

	Click the Activate button to activate the extension

Part 3 - Configure the SecurePay extension

	Click on WooCommerce > Settings then click on the Payments tab

	Find the SecurePay API payment method and click on the Manage button to open the configuration options
[image:]

	Edit options where required and save

PrestaShop

See compatibility of e-Commerce extensions in overview here

SecurePay API PrestaShop Install Instructions

This guide outlines the download and install instructions for the SecurePay API PrestaShop extension.

The current version of the SecurePay API PrestaShop extension is 1.4.0

	Latest version	
 Version 1.4.0, 4th August 2022

 	General fix

Part 1 - Download the extension

Download the extension to get started:

Download

Part 2 - Install the extension

	Login to your PrestaShop admin interface

	Navigate to Modules > Module manager

	Click on the Upload a module button at the top of the page

	Browse your computer to find the downloaded extension, and upload the extension

Part 3 - Configure the SecurePay extension

	Click on Modules > Module manager

	Find the SecurePay API payment method and click on the Configure button to open the configuration options
[image:]

	Edit options where required and save

Troubleshooting Guide

This troubleshooting guide provides information regarding common issues and mistakes with regard to merchant's Apple Pay setup, payment token expired or incorrect input format. It also provides information about fixes, knowledge bases, and support for those issues.

List of supported issues

 Apple Pay Domain Verification Failed

Possible cause and solution:

	
 Domain Verification
 file hosted on your domain is not correct or not accessible over internet as Apple needs to access the file for verification purpose.

	Path to the
 Domain Verification
 file is not correct according to the guidelines, please follow the instructions here for Apple Pay Account setup.
 Expected URL for Domain Verification file is https://{domain-name}/.well-known/apple-developer-merchantid-domain-association.

 Mismatch in Amount being settled

Possible cause and solution:

	 Amount sent in request is not in the expected format.
If you are sending $1.00, the amount value should be 100. Do not send float values (1.00 will be treated as 1 cent).
Please refer please follow the instructions here for expected input formats.

Support
Contact Us

Our support email address is support@securepay.com.au

System status
GET https://payments-stest.npe.auspost.zone/v2/health

curl https://api.payments-stest.npe.auspost.zone/v2/health -X GET
 -H "Content-Type: application/json"
 -H "Authorization: Bearer xxxxxxxx

{
 "status": "UP"
}

To check the system / health status of the SecurePay API, make the following request.

HTTP Request

Please note that request timeout is 30 seconds.

GET https://payments-stest.npe.auspost.zone/v2/health

Header Parameters

	Parameter	Required	Description
	Authorization	Required	Refer to client credentials for more information on obtaining an access token.

Response

	Name	Description
	status	The health status of SecurePay API. Status could be UP or DOWN.

